We fitted a model relating species richness of shallow water ostracods to seven environmental predictors: water depth, bottom water temperature, salinity, productivity (particulate organic carbon flux to ocean floor), productivity squared (because of commonly observed hump-shaped relationships between richness and productivity in marine systems), seasonal variation in productivity, and the annual number of ice-free days; n = 129). To be consistent with Yasuhara et al’s original analysis, water depth and seasonal variation in productivity were both positively skewed and were log-transformed, although the same argument could have been used for temperature. Additionally, all predictors were centered; note that centering does not affect the recommended measures of relative importance.

Ostracod. Anna Syme, CC Attribution 2.5 Generic

The paper is here

Yasuhara, M., Hunt, G., van Dijken, G., Arrigo, K. R., Cronin, T. M. & Wollenburg, J. E. (2012). Patterns and controlling factors of species diversity in the Arctic Ocean. Journal of Biogeography, 39, 2081-88.

Preliminaries

First, load the required packages (relaimpo, car, hier.part, MuMIn, lm.beta)

Import yasuhara data file (yasuhara.csv)

Note that yasuhara_salmod is actually the file that’s imported for now; it is a subset of the full data set, with some low sal values removed. This is the data used for analysis in the paper.

Note. The yasuhara file associated with the paper is the full data set. The analyses of shallow-water ostracods used a subset of that data. Four deep sites (depth >200m) were excluded, as were three with a freshwater influence (salinity <21)

yasuhara <- read.csv("../data/yasuhara.csv")
yasuhara <- subset(yasuhara, salinity>21 & depth <= 200)
head(yasuhara,10)

First we repeat shallow-water ostracod analysis as in Table 1 of paper

Note: have changed original csv file names to match those in code below

Scatterplot matrix

scatterplotMatrix(~sprich+depth+temp+salinity+prod+seasprod+icefree, data=yasuhara, cex=.5, regLine=FALSE, diagonal=list(method='boxplot'))

Transform variables as needed, including quadratic for productivity

Center predictors as well

yasuhara$prod2 <- (yasuhara$prod)^2
yasuhara$ldepth <- log10(yasuhara$depth)
yasuhara$lseasprod <- log10(yasuhara$seasprod)
yasuhara$cldepth <- scale(yasuhara$ldepth, center=TRUE, scale=FALSE)
yasuhara$ctemp <- scale(yasuhara$temp, center=TRUE, scale=FALSE)
yasuhara$csalinity <- scale(yasuhara$salinity, center=TRUE, scale=FALSE)
yasuhara$cprod <- scale(yasuhara$prod, center=TRUE, scale=FALSE)
yasuhara$cprod2 <- scale(yasuhara$prod2, center=TRUE, scale=FALSE)
yasuhara$clseasprod <- scale(yasuhara$lseasprod, center=TRUE, scale=FALSE)
yasuhara$cicefree <- scale(yasuhara$icefree, center=TRUE, scale=FALSE)

Get VIFs to check for collinearity issues; also look at correlations Fit regression model to get influence measures

vif(lm(sprich~cldepth+ctemp+csalinity+cprod+cprod2+clseasprod+cicefree, data=yasuhara))
   cldepth      ctemp  csalinity      cprod     cprod2 clseasprod   cicefree 
  4.352417   3.543887   4.992620  27.660590  20.767683  15.523035  20.760021 
cor(yasuhara[,c('cldepth','ctemp','csalinity','cprod','cprod2','clseasprod','cicefree')])
               cldepth      ctemp   csalinity       cprod      cprod2  clseasprod   cicefree
cldepth     1.00000000  0.3891785  0.84784714 -0.09488397  0.01871298 -0.08130645 -0.2781119
ctemp       0.38917848  1.0000000  0.34629660  0.22755053  0.22625504 -0.52110033 -0.7319989
csalinity   0.84784714  0.3462966  1.00000000 -0.32989442 -0.22711552  0.05660052 -0.1560640
cprod      -0.09488397  0.2275505 -0.32989442  1.00000000  0.95956750 -0.72386615 -0.6336593
cprod2      0.01871298  0.2262550 -0.22711552  0.95956750  1.00000000 -0.63201614 -0.5939684
clseasprod -0.08130645 -0.5211003  0.05660052 -0.72386615 -0.63201614  1.00000000  0.9210498
cicefree   -0.27811191 -0.7319989 -0.15606404 -0.63365926 -0.59396839  0.92104981  1.0000000
scatterplotMatrix(~sprich+cldepth+ctemp+csalinity+cprod+cprod2+clseasprod+cicefree, data=yasuhara, cex=.5, regLine=FALSE, diagonal=list(method='boxplot'))

yasuhara.lm <- lm(sprich~cldepth+ctemp+csalinity+cprod+cprod2+clseasprod+cicefree, data=yasuhara)
plot(yasuhara.lm)

augment(yasuhara.lm)
NA

Examine model output

tidy(yasuhara.lm, conf.int=TRUE)

Standardized coefficients (usual)

lm.beta.yasuhara <- lm.beta(yasuhara.lm)
lm.beta.yasuhara

Call:
lm(formula = sprich ~ cldepth + ctemp + csalinity + cprod + cprod2 + 
    clseasprod + cicefree, data = yasuhara)

Standardized Coefficients::
(Intercept)     cldepth       ctemp   csalinity       cprod      cprod2  clseasprod    cicefree 
         NA   0.1690832  -0.4625760   0.2826530  -0.5191710   0.1263809  -0.7765347   0.2955774 

standardized coefficients (both usual and partial sd)

std.coef(yasuhara.lm, partial.sd=FALSE)
            Estimate* Std. Error*  df
(Intercept)   0.00000     0.00000 121
cldepth       0.16908     0.15651 121
ctemp        -0.46258     0.14122 121
csalinity     0.28265     0.16762 121
cprod        -0.51917     0.39455 121
cprod2        0.12638     0.34187 121
clseasprod   -0.77653     0.29557 121
cicefree      0.29558     0.34181 121
std.coef(yasuhara.lm, partial.sd=TRUE)
            Estimate* Std. Error*  df
(Intercept)   0.00000     0.00000 121
cldepth       0.52569     0.48659 121
ctemp        -1.59381     0.48659 121
csalinity     0.82051     0.48659 121
cprod        -0.64028     0.48659 121
cprod2        0.17988     0.48659 121
clseasprod   -1.27840     0.48659 121
cicefree      0.42078     0.48659 121

Relative importance metrics

calc.relimp(yasuhara.lm, type = c("lmg", "pmvd", "last", "first", "betasq", "pratt"), rela=FALSE)
Response variable: sprich 
Total response variance: 42.40007 
Analysis based on 129 observations 

7 Regressors: 
cldepth ctemp csalinity cprod cprod2 clseasprod cicefree 
Proportion of variance explained by model: 31.9%
Metrics are not normalized (rela=FALSE). 

Relative importance metrics: 

                  lmg        pmvd         last       first     betasq       pratt
cldepth    0.04585922 0.028074571 0.0065685629 0.068259277 0.02858913  0.04417548
ctemp      0.08247454 0.088397149 0.0603790501 0.040057552 0.21397655  0.09258173
csalinity  0.06431606 0.097053096 0.0160021617 0.101320302 0.07989271  0.08997085
cprod      0.03329101 0.047321887 0.0097444976 0.056471134 0.26953855  0.12337402
cprod2     0.02508002 0.003789243 0.0007690854 0.049404358 0.01597212 -0.02809079
clseasprod 0.04138893 0.046455138 0.0388458895 0.001220917 0.60300611 -0.02713338
cicefree   0.02662583 0.007944537 0.0042083759 0.006679892 0.08736597  0.02415772

Average coefficients for different model sizes: 

                      1X           2Xs           3Xs           4Xs           5Xs           6Xs           7Xs
cldepth     3.4063617807  3.148954e+00  3.127298e+00  3.026922e+00  2.929623e+00  2.667016e+00  2.204501e+00
ctemp      -0.6187634981 -8.102006e-01 -1.206430e+00 -1.513119e+00 -1.610497e+00 -1.576792e+00 -1.430097e+00
csalinity   1.0166022108  1.060860e+00  1.097903e+00  1.146328e+00  1.080044e+00  9.772467e-01  9.027269e-01
cprod      -0.0261160393 -2.985905e-02 -3.049686e-02 -3.221847e-02 -3.832766e-02 -4.901019e-02 -5.705642e-02
cprod2     -0.0001128541 -9.316944e-05 -8.384049e-05 -7.733780e-05 -4.832558e-05  8.742253e-06  6.416765e-05
clseasprod  1.6030832095 -5.744933e+00 -1.606088e+01 -2.573282e+01 -3.230270e+01 -3.526878e+01 -3.562656e+01
cicefree    0.0115496083  6.981186e-03  1.077312e-02  2.013563e-02  3.047528e-02  3.673742e-02  4.176896e-02
yasuhara.boot <- boot.relimp(yasuhara.lm, b=1000, type = c("lmg", "pmvd"))
booteval.relimp(yasuhara.boot)
Response variable: sprich 
Total response variance: 42.40007 
Analysis based on 129 observations 

7 Regressors: 
cldepth ctemp csalinity cprod cprod2 clseasprod cicefree 
Proportion of variance explained by model: 31.9%
Metrics are not normalized (rela=FALSE). 

Relative importance metrics: 

                  lmg        pmvd
cldepth    0.04585922 0.028074571
ctemp      0.08247454 0.088397149
csalinity  0.06431606 0.097053096
cprod      0.03329101 0.047321887
cprod2     0.02508002 0.003789243
clseasprod 0.04138893 0.046455138
cicefree   0.02662583 0.007944537

Average coefficients for different model sizes: 

                      1X           2Xs           3Xs           4Xs           5Xs           6Xs           7Xs
cldepth     3.4063617807  3.148954e+00  3.127298e+00  3.026922e+00  2.929623e+00  2.667016e+00  2.204501e+00
ctemp      -0.6187634981 -8.102006e-01 -1.206430e+00 -1.513119e+00 -1.610497e+00 -1.576792e+00 -1.430097e+00
csalinity   1.0166022108  1.060860e+00  1.097903e+00  1.146328e+00  1.080044e+00  9.772467e-01  9.027269e-01
cprod      -0.0261160393 -2.985905e-02 -3.049686e-02 -3.221847e-02 -3.832766e-02 -4.901019e-02 -5.705642e-02
cprod2     -0.0001128541 -9.316944e-05 -8.384049e-05 -7.733780e-05 -4.832558e-05  8.742253e-06  6.416765e-05
clseasprod  1.6030832095 -5.744933e+00 -1.606088e+01 -2.573282e+01 -3.230270e+01 -3.526878e+01 -3.562656e+01
cicefree    0.0115496083  6.981186e-03  1.077312e-02  2.013563e-02  3.047528e-02  3.673742e-02  4.176896e-02

 
 Confidence interval information ( 1000 bootstrap replicates, bty= perc ): 
Relative Contributions with confidence intervals: 
 
                                   Lower  Upper
                percentage 0.95    0.95   0.95  
cldepth.lmg     0.0459     ABCDEFG 0.0154 0.1130
ctemp.lmg       0.0825     ABCDEFG 0.0241 0.1712
csalinity.lmg   0.0643     ABCDEF_ 0.0258 0.1247
cprod.lmg       0.0333     ABCDEFG 0.0127 0.0917
cprod2.lmg      0.0251     _BCDEFG 0.0095 0.0752
clseasprod.lmg  0.0414     ABCDEFG 0.0219 0.0809
cicefree.lmg    0.0266     __CDEFG 0.0175 0.0510
                                                
cldepth.pmvd    0.0281     ABCDEFG 0.0000 0.1662
ctemp.pmvd      0.0884     ABCDEF_ 0.0113 0.1673
csalinity.pmvd  0.0971     ABCDEFG 0.0005 0.1996
cprod.pmvd      0.0473     ABCDEFG 0.0002 0.1401
cprod2.pmvd     0.0038     ABCDEFG 0.0000 0.0970
clseasprod.pmvd 0.0465     _BCDEF_ 0.0181 0.0934
cicefree.pmvd   0.0079     __CDEFG 0.0000 0.0629

Letters indicate the ranks covered by bootstrap CIs. 
(Rank bootstrap confidence intervals always obtained by percentile method) 
CAUTION: Bootstrap confidence intervals can be somewhat liberal. 

 
 Differences between Relative Contributions: 
 
                                          Lower   Upper
                          difference 0.95 0.95    0.95   
cldepth-ctemp.lmg         -0.0366         -0.1300  0.0656
cldepth-csalinity.lmg     -0.0185         -0.0686  0.0400
cldepth-cprod.lmg          0.0126         -0.0532  0.0877
cldepth-cprod2.lmg         0.0208         -0.0441  0.0922
cldepth-clseasprod.lmg     0.0045         -0.0501  0.0831
cldepth-cicefree.lmg       0.0192         -0.0259  0.0911
ctemp-csalinity.lmg        0.0182         -0.0773  0.1154
ctemp-cprod.lmg            0.0492         -0.0474  0.1357
ctemp-cprod2.lmg           0.0574         -0.0357  0.1487
ctemp-clseasprod.lmg       0.0411         -0.0406  0.1324
ctemp-cicefree.lmg         0.0558         -0.0082  0.1289
csalinity-cprod.lmg        0.0310         -0.0363  0.0894
csalinity-cprod2.lmg       0.0392         -0.0320  0.0996
csalinity-clseasprod.lmg   0.0229         -0.0287  0.0822
csalinity-cicefree.lmg     0.0377         -0.0120  0.0979
cprod-cprod2.lmg           0.0082         -0.0152  0.0293
cprod-clseasprod.lmg      -0.0081         -0.0468  0.0464
cprod-cicefree.lmg         0.0067         -0.0242  0.0605
cprod2-clseasprod.lmg     -0.0163         -0.0505  0.0335
cprod2-cicefree.lmg       -0.0015         -0.0282  0.0458
clseasprod-cicefree.lmg    0.0148         -0.0087  0.0405
                                                         
cldepth-ctemp.pmvd        -0.0603         -0.1547  0.1068
cldepth-csalinity.pmvd    -0.0690         -0.1904  0.1454
cldepth-cprod.pmvd        -0.0192         -0.1170  0.1428
cldepth-cprod2.pmvd        0.0243         -0.0649  0.1486
cldepth-clseasprod.pmvd   -0.0184         -0.0861  0.1287
cldepth-cicefree.pmvd      0.0201         -0.0508  0.1518
ctemp-csalinity.pmvd      -0.0087         -0.1329  0.1249
ctemp-cprod.pmvd           0.0411         -0.0765  0.1403
ctemp-cprod2.pmvd          0.0846         -0.0418  0.1571
ctemp-clseasprod.pmvd      0.0419         -0.0545  0.1278
ctemp-cicefree.pmvd        0.0805         -0.0380  0.1564
csalinity-cprod.pmvd       0.0497         -0.1081  0.1712
csalinity-cprod2.pmvd      0.0933         -0.0686  0.1912
csalinity-clseasprod.pmvd  0.0506         -0.0586  0.1530
csalinity-cicefree.pmvd    0.0891         -0.0367  0.1894
cprod-cprod2.pmvd          0.0435         -0.0874  0.1276
cprod-clseasprod.pmvd      0.0009         -0.0643  0.0829
cprod-cicefree.pmvd        0.0394         -0.0368  0.1235
cprod2-clseasprod.pmvd    -0.0427         -0.0833  0.0476
cprod2-cicefree.pmvd      -0.0042         -0.0495  0.0857
clseasprod-cicefree.pmvd   0.0385         -0.0272  0.0843

* indicates that CI for difference does not include 0. 
CAUTION: Bootstrap confidence intervals can be somewhat liberal. 

Compare to uncentered predictors - no change in conclusions

yasuhara.lm1 <- lm(sprich~ldepth+temp+salinity+prod+lseasprod+icefree, data=yasuhara)
vif(lm(sprich~ldepth+temp+salinity+prod+lseasprod+icefree, data=yasuhara))
   ldepth      temp  salinity      prod lseasprod   icefree 
 4.187101  3.451081  4.989499  2.979970 12.260591 19.008007 
summary(yasuhara.lm1)

Call:
lm(formula = sprich ~ ldepth + temp + salinity + prod + lseasprod + 
    icefree, data = yasuhara)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.2653 -4.1493 -0.6728  3.4358 21.5077 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -12.37608   20.03901  -0.618 0.537990    
ldepth        2.35151    1.99432   1.179 0.240650    
temp         -1.45622    0.42933  -3.392 0.000936 ***
salinity      0.90767    0.53328   1.702 0.091293 .  
prod         -0.04192    0.01418  -2.956 0.003747 ** 
lseasprod   -33.32844   12.00870  -2.775 0.006383 ** 
icefree       0.03658    0.04606   0.794 0.428562    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.507 on 122 degrees of freedom
Multiple R-squared:  0.3183,    Adjusted R-squared:  0.2847 
F-statistic: 9.493 on 6 and 122 DF,  p-value: 1.502e-08
calc.relimp(yasuhara.lm, type = c("lmg", "pmvd", "last", "first", "betasq", "pratt"), rela=FALSE)
Response variable: sprich 
Total response variance: 42.40007 
Analysis based on 129 observations 

7 Regressors: 
cldepth ctemp csalinity cprod cprod2 clseasprod cicefree 
Proportion of variance explained by model: 31.9%
Metrics are not normalized (rela=FALSE). 

Relative importance metrics: 

                  lmg        pmvd         last       first     betasq       pratt
cldepth    0.04585922 0.028074571 0.0065685629 0.068259277 0.02858913  0.04417548
ctemp      0.08247454 0.088397149 0.0603790501 0.040057552 0.21397655  0.09258173
csalinity  0.06431606 0.097053096 0.0160021617 0.101320302 0.07989271  0.08997085
cprod      0.03329101 0.047321887 0.0097444976 0.056471134 0.26953855  0.12337402
cprod2     0.02508002 0.003789243 0.0007690854 0.049404358 0.01597212 -0.02809079
clseasprod 0.04138893 0.046455138 0.0388458895 0.001220917 0.60300611 -0.02713338
cicefree   0.02662583 0.007944537 0.0042083759 0.006679892 0.08736597  0.02415772

Average coefficients for different model sizes: 

                      1X           2Xs           3Xs           4Xs           5Xs           6Xs           7Xs
cldepth     3.4063617807  3.148954e+00  3.127298e+00  3.026922e+00  2.929623e+00  2.667016e+00  2.204501e+00
ctemp      -0.6187634981 -8.102006e-01 -1.206430e+00 -1.513119e+00 -1.610497e+00 -1.576792e+00 -1.430097e+00
csalinity   1.0166022108  1.060860e+00  1.097903e+00  1.146328e+00  1.080044e+00  9.772467e-01  9.027269e-01
cprod      -0.0261160393 -2.985905e-02 -3.049686e-02 -3.221847e-02 -3.832766e-02 -4.901019e-02 -5.705642e-02
cprod2     -0.0001128541 -9.316944e-05 -8.384049e-05 -7.733780e-05 -4.832558e-05  8.742253e-06  6.416765e-05
clseasprod  1.6030832095 -5.744933e+00 -1.606088e+01 -2.573282e+01 -3.230270e+01 -3.526878e+01 -3.562656e+01
cicefree    0.0115496083  6.981186e-03  1.077312e-02  2.013563e-02  3.047528e-02  3.673742e-02  4.176896e-02

Now hierarchical partitioning

This step uses the subsets of the original dataframe into response and predictors.

yasuhara_sprich<-yasuhara$sprich
yasuhara_pred<-subset(yasuhara, select = c("cldepth","ctemp","csalinity","clseasprod","cicefree","cprod", "cprod2"))
hier.part(yasuhara_sprich, yasuhara_pred, family="gaussian", gof="Rsqu")
Error in hier.part(yasuhara_sprich, yasuhara_pred, family = "gaussian",  : 
  could not find function "hier.part"

The package hier.part was removed from CRAN in March 2023. The code above will work if you have hier.part installed already. An alternative is to use the package glmm.hp, which is done in the next code chunk.

Hier.part can also be installed from Github, though there may be issues with M1/M2 Macs. The quick way from Github is using devtools: devtools::install_github(“cjbwalsh/hier.part”)

library (glmm.hp)
Loading required package: vegan
Loading required package: permute
This is vegan 2.6-4

Attaching package: ‘vegan’

The following object is masked from ‘package:survey’:

    calibrate
glmm.hp(yasuhara.lm, type="R2")
Warning: 'r.squaredGLMM' now calculates a revised statistic. See the help page.
$Total.R2
[1] 0.3190356

$hierarchical.partitioning
           Unique Average.share Individual I.perc(%)
cldepth    0.0066        0.0393     0.0459     14.38
ctemp      0.0604        0.0221     0.0825     25.85
csalinity  0.0160        0.0483     0.0643     20.15
cprod      0.0097        0.0236     0.0333     10.44
cprod2     0.0008        0.0243     0.0251      7.87
clseasprod 0.0388        0.0026     0.0414     12.97
cicefree   0.0042        0.0224     0.0266      8.34

$variables
[1] "cldepth"    "ctemp"      "csalinity"  "cprod"      "cprod2"     "clseasprod" "cicefree"  

$type
[1] "hierarchical.partitioning"

attr(,"class")
[1] "glmmhp"

Model selection

options(na.action = "na.fail")
yasuhara.dredge <-dredge(yasuhara.lm, beta="none", evaluate=TRUE)
Fixed term is "(Intercept)"
yasuhara.dredge
Global model call: lm(formula = sprich ~ cldepth + ctemp + csalinity + cprod + cprod2 + 
    clseasprod + cicefree, data = yasuhara)
---
Model selection table 
    (Intrc)     cicfr   cldpt    clssp     cprod      cprd2  cslnt   ctemp df   logLik  AICc delta weight
109    14.3                   -24.4200 -0.039950            1.3250 -1.6650  6 -400.517 813.7  0.00  0.175
111    14.3            2.2380 -25.0200 -0.044560            0.8302 -1.6970  7 -399.854 814.6  0.91  0.111
79     14.3            4.8830 -25.9700 -0.054010                   -1.6350  6 -401.159 815.0  1.29  0.092
117    14.3                   -20.2300           -1.403e-04 1.4800 -1.6320  6 -401.306 815.3  1.58  0.079
110    14.3  0.032700         -31.8200 -0.037380            1.4170 -1.4480  7 -400.252 815.4  1.71  0.074
125    14.3                   -25.4600 -0.054120  5.737e-05 1.2790 -1.6740  7 -400.451 815.8  2.11  0.061
119    14.3            2.4260 -20.6300           -1.625e-04 0.9571 -1.6640  7 -400.562 816.0  2.33  0.055
112    14.3  0.036580  2.3520 -33.3300 -0.041920            0.9077 -1.4560  8 -399.521 816.2  2.52  0.050
127    14.3            2.1860 -25.3800 -0.049530  2.056e-05 0.8251 -1.6990  8 -399.846 816.9  3.17  0.036
80     14.3  0.022240  5.1010 -31.0800 -0.052940                   -1.4860  7 -401.035 817.0  3.27  0.034
95     14.3            4.7460 -26.6700 -0.063770  4.086e-05        -1.6410  7 -401.128 817.2  3.46  0.031
118    14.3  0.027250         -26.4400           -1.297e-04 1.5510 -1.4520  7 -401.134 817.2  3.47  0.031
126    14.3  0.041230         -35.5800 -0.061590  1.007e-04 1.3590 -1.4080  8 -400.068 817.3  3.61  0.029
87     14.3            5.6230 -20.5400           -2.019e-04        -1.5810  6 -402.343 817.4  3.65  0.028
120    14.3  0.029010  2.4640 -27.2500           -1.516e-04 1.0250 -1.4730  8 -400.365 817.9  4.21  0.021
128    14.3  0.041770  2.2050 -35.6300 -0.057060  6.417e-05 0.9027 -1.4300  9 -399.448 818.4  4.69  0.017
96     14.3  0.028110  4.9210 -33.6500 -0.069740  7.149e-05        -1.4560  8 -400.947 819.1  5.37  0.012
88     14.3  0.009695  5.7120 -22.7500           -1.992e-04        -1.5150  7 -402.321 819.6  5.85  0.009
114    14.3 -0.067080                            -1.384e-04 1.2720 -1.9290  6 -403.626 819.9  6.22  0.008
106    14.3 -0.073910                  -0.033720            1.1360 -1.9670  6 -403.862 820.4  6.69  0.006
101    14.3                   -12.0000                      1.6320 -1.5870  5 -405.141 820.8  7.05  0.005
102    14.3  0.065960         -28.5400                      1.7770 -1.1600  6 -404.058 820.8  7.08  0.005
116    14.3 -0.068080  2.2080                    -1.583e-04 0.7932 -1.9610  7 -403.031 821.0  7.27  0.005
84     14.3 -0.070730  4.8530                    -1.956e-04        -1.9300  6 -404.206 821.1  7.38  0.004
76     14.3 -0.080430  4.0800          -0.046420                   -1.9860  6 -404.444 821.6  7.85  0.003
108    14.3 -0.074780  1.7630          -0.036990            0.7445 -1.9920  7 -403.470 821.9  8.14  0.003
122    14.3 -0.069540                  -0.008138 -1.084e-04 1.2340 -1.9450  7 -403.603 822.1  8.41  0.003
104    14.3  0.068490  0.7526 -28.8900                      1.6280 -1.1510  7 -403.982 822.9  9.17  0.002
103    14.3            0.3288 -11.8700                      1.5640 -1.5900  6 -405.126 822.9  9.22  0.002
92     14.3 -0.075690  4.5560          -0.017220 -1.284e-04        -1.9640  7 -404.099 823.1  9.40  0.002
124    14.3 -0.069150  2.1870          -0.003569 -1.449e-04 0.7811 -1.9670  8 -403.027 823.3  9.53  0.001
98     14.3 -0.033560                                       1.4910 -1.6560  5 -406.840 824.2 10.45  0.001
46     14.3  0.142600         -50.1000 -0.026090            1.4670          6 -405.944 824.6 10.85  0.001
48     14.3  0.146800  2.2460 -51.6400 -0.030360            0.9805          7 -405.334 825.6 11.87  0.000
62     14.3  0.152700         -56.1100 -0.071480  1.864e-04 1.3570          7 -405.349 825.6 11.90  0.000
54     14.3  0.140500         -46.2100           -7.921e-05 1.5810          6 -406.676 826.0 12.32  0.000
38     14.3  0.151000         -44.9600                      1.7260          5 -407.777 826.0 12.32  0.000
97     14.3                                                 1.4070 -1.0900  4 -408.965 826.3 12.53  0.000
100    14.3 -0.032870  0.3998                               1.4100 -1.6550  6 -406.819 826.3 12.61  0.000
16     14.3  0.133700  5.2190 -49.6000 -0.042040                            6 -406.949 826.6 12.87  0.000
64     14.3  0.154700  1.8920 -56.4300 -0.067720  1.562e-04 0.9653          8 -404.928 827.1 13.33  0.000
56     14.3  0.143500  2.1910 -47.1800           -9.803e-05 1.1130          7 -406.118 827.2 13.44  0.000
32     14.3  0.142200  4.7950 -54.7200 -0.081510  1.658e-04                 7 -406.503 827.9 14.21  0.000
40     14.3  0.153600  1.0330 -45.2800                      1.5220          6 -407.642 828.0 14.25  0.000
99     14.3            1.2080                               1.1670 -1.1210  5 -408.774 828.0 14.31  0.000
113    14.3                                      -2.557e-05 1.3510 -1.0360  5 -408.790 828.1 14.35  0.000
105    14.3                            -0.001752            1.3830 -1.0710  5 -408.949 828.4 14.66  0.000
121    14.3                             0.047130 -2.235e-04 1.5550 -1.1340  6 -407.852 828.4 14.67  0.000
24     14.3  0.126000  5.7200 -42.9000           -1.482e-04                 6 -408.232 829.2 15.43  0.000
115    14.3            1.9050                    -4.126e-05 0.9384 -1.0520  6 -408.380 829.4 15.73  0.000
123    14.3            2.2800           0.051570 -2.610e-04 1.0800 -1.1620  7 -407.264 829.5 15.73  0.000
93     14.3                   -31.5300 -0.139600  3.336e-04        -1.2920  6 -408.580 829.8 16.13  0.000
107    14.3            1.4790          -0.004179            1.0570 -1.0830  6 -408.694 830.1 16.35  0.000
83     14.3            5.0430                    -8.036e-05        -0.9734  5 -409.901 830.3 16.57  0.000
71     14.3            5.5210  -7.6080                             -1.3950  5 -410.228 830.9 17.22  0.000
91     14.3            5.6930           0.039470 -2.530e-04        -1.0480  6 -409.244 831.2 17.46  0.000
75     14.3            4.8430          -0.014370                   -0.9737  5 -410.550 831.6 17.87  0.000
72     14.3  0.055020  6.0310 -21.1400                             -1.0370  6 -409.543 831.8 18.05  0.000
67     14.3            5.2110                                      -1.1000  4 -411.776 831.9 18.15  0.000
94     14.3 -0.016050         -27.4400 -0.134600  3.100e-04        -1.4050  7 -408.524 832.0 18.25  0.000
74     14.3 -0.096230                  -0.059130                   -1.7810  5 -410.838 832.2 18.44  0.000
77     14.3                   -25.7500 -0.061630                   -1.1280  5 -410.902 832.3 18.57  0.000
68     14.3 -0.020550  5.2260                                      -1.4300  5 -411.004 832.5 18.77  0.000
78     14.3 -0.053040         -13.5900 -0.063370                   -1.5400  6 -410.187 833.1 19.34  0.000
90     14.3 -0.099160                  -0.087220  1.301e-04        -1.8280  6 -410.432 833.6 19.83  0.000
8      14.3  0.133000  5.9760 -36.4400                                      5 -412.301 835.1 21.37  0.000
82     14.3 -0.075500                            -2.172e-04        -1.5290  5 -413.722 837.9 24.21  0.000
30     14.3  0.095220         -47.9300 -0.144400  3.951e-04                 6 -413.157 839.0 25.28  0.000
49     14.3                                      -8.029e-05 0.9019          4 -415.617 839.6 25.83  0.000
45     14.3                    -9.2040 -0.033800            0.7288          5 -414.600 839.7 25.97  0.000
15     14.3            2.7010 -10.2200 -0.041670                            5 -414.770 840.0 26.31  0.000
53     14.3                    -6.2700           -1.256e-04 0.8619          5 -414.796 840.1 26.36  0.000
86     14.3 -0.073960          -0.4398           -2.173e-04        -1.5190  6 -413.721 840.1 26.41  0.000
41     14.3                            -0.016360            0.8598          4 -415.909 840.1 26.42  0.000
19     14.3            3.4620                    -1.154e-04                 4 -415.996 840.3 26.59  0.000
85     14.3                   -16.8500           -1.958e-04        -0.9408  5 -414.969 840.4 26.71  0.000
 [ reached getOption("max.print") -- omitted 52 rows ]
Models ranked by AICc(x) 

above results match table 1 in paper

Model averaging

yasuhara.ma<-model.avg(yasuhara.dredge)
summary(yasuhara.ma)

Call:
model.avg(object = yasuhara.dredge)

Component model call: 
lm(formula = sprich ~ <128 unique rhs>, data = yasuhara)

Component models: 
        df  logLik   AICc delta weight
3467     6 -400.52 813.72  0.00   0.17
23467    7 -399.85 814.63  0.91   0.11
2347     6 -401.16 815.01  1.29   0.09
3567     6 -401.31 815.30  1.58   0.08
13467    7 -400.25 815.43  1.71   0.07
34567    7 -400.45 815.83  2.11   0.06
23567    7 -400.56 816.05  2.33   0.05
123467   8 -399.52 816.24  2.52   0.05
234567   8 -399.85 816.89  3.17   0.04
12347    7 -401.03 817.00  3.27   0.03
23457    7 -401.13 817.18  3.46   0.03
13567    7 -401.13 817.19  3.47   0.03
134567   8 -400.07 817.34  3.61   0.03
2357     6 -402.34 817.38  3.65   0.03
123567   8 -400.36 817.93  4.21   0.02
1234567  9 -399.45 818.41  4.69   0.02
123457   8 -400.95 819.09  5.37   0.01
12357    7 -402.32 819.57  5.85   0.01
1567     6 -403.63 819.94  6.22   0.01
1467     6 -403.86 820.41  6.69   0.01
367      5 -405.14 820.77  7.05   0.01
1367     6 -404.06 820.80  7.08   0.01
12567    7 -403.03 820.99  7.27   0.00
1257     6 -404.21 821.10  7.38   0.00
1247     6 -404.44 821.58  7.85   0.00
12467    7 -403.47 821.87  8.14   0.00
14567    7 -403.60 822.13  8.41   0.00
12367    7 -403.98 822.89  9.17   0.00
2367     6 -405.13 822.94  9.22   0.00
12457    7 -404.10 823.12  9.40   0.00
124567   8 -403.03 823.25  9.53   0.00
167      5 -406.84 824.17 10.45   0.00
1346     6 -405.94 824.58 10.85   0.00
12346    7 -405.33 825.59 11.87   0.00
13456    7 -405.35 825.62 11.90   0.00
1356     6 -406.68 826.04 12.32   0.00
136      5 -407.78 826.04 12.32   0.00
67       4 -408.96 826.25 12.53   0.00
1267     6 -406.82 826.33 12.61   0.00
1234     6 -406.95 826.59 12.87   0.00
123456   8 -404.93 827.06 13.33   0.00
12356    7 -406.12 827.16 13.44   0.00
12345    7 -406.50 827.93 14.21   0.00
1236     6 -407.64 827.97 14.25   0.00
267      5 -408.77 828.04 14.31   0.00
567      5 -408.79 828.07 14.35   0.00
467      5 -408.95 828.39 14.66   0.00
4567     6 -407.85 828.39 14.67   0.00
1235     6 -408.23 829.15 15.43   0.00
2567     6 -408.38 829.45 15.73   0.00
24567    7 -407.26 829.45 15.73   0.00
3457     6 -408.58 829.85 16.13   0.00
2467     6 -408.69 830.08 16.35   0.00
257      5 -409.90 830.29 16.57   0.00
237      5 -410.23 830.94 17.22   0.00
2457     6 -409.24 831.18 17.46   0.00
247      5 -410.55 831.59 17.87   0.00
1237     6 -409.54 831.77 18.05   0.00
27       4 -411.78 831.87 18.15   0.00
13457    7 -408.52 831.97 18.25   0.00
147      5 -410.84 832.16 18.44   0.00
347      5 -410.90 832.29 18.57   0.00
127      5 -411.00 832.50 18.77   0.00
1347     6 -410.19 833.06 19.34   0.00
1457     6 -410.43 833.55 19.83   0.00
123      5 -412.30 835.09 21.37   0.00
157      5 -413.72 837.93 24.21   0.00
1345     6 -413.16 839.00 25.28   0.00
56       4 -415.62 839.56 25.83   0.00
346      5 -414.60 839.69 25.97   0.00
234      5 -414.77 840.03 26.31   0.00
356      5 -414.80 840.08 26.36   0.00
1357     6 -413.72 840.13 26.41   0.00
46       4 -415.91 840.14 26.42   0.00
25       4 -416.00 840.31 26.59   0.00
357      5 -414.97 840.43 26.71   0.00
16       4 -416.06 840.44 26.72   0.00
235      5 -415.06 840.60 26.88   0.00
6        3 -417.34 840.88 27.15   0.00
24       4 -416.43 841.18 27.46   0.00
256      5 -415.42 841.33 27.61   0.00
156      5 -415.48 841.45 27.73   0.00
2346     6 -414.45 841.58 27.86   0.00
456      5 -415.56 841.60 27.88   0.00
2356     6 -414.58 841.85 28.13   0.00
3456     6 -414.59 841.88 28.16   0.00
134      5 -415.72 841.93 28.21   0.00
146      5 -415.77 842.02 28.30   0.00
246      5 -415.80 842.09 28.37   0.00
2345     6 -414.76 842.20 28.48   0.00
125      5 -415.94 842.37 28.65   0.00
245      5 -415.96 842.41 28.69   0.00
126      5 -416.02 842.54 28.82   0.00
36       4 -417.32 842.97 29.24   0.00
26       4 -417.32 842.97 29.25   0.00
1456     6 -415.23 843.15 29.43   0.00
1256     6 -415.28 843.25 29.53   0.00
124      5 -416.40 843.29 29.57   0.00
2456     6 -415.34 843.37 29.65   0.00
23456    7 -414.42 843.76 30.04   0.00
34       4 -417.73 843.78 30.05   0.00
1246     6 -415.66 844.00 30.28   0.00
12       4 -417.86 844.04 30.32   0.00
1245     6 -415.83 844.34 30.62   0.00
345      5 -417.16 844.80 31.08   0.00
12456    7 -414.97 844.86 31.14   0.00
236      5 -417.31 845.11 31.39   0.00
2        3 -419.67 845.54 31.81   0.00
47       4 -418.93 846.17 32.45   0.00
57       4 -419.34 847.00 33.28   0.00
4        3 -420.48 847.16 33.44   0.00
23       4 -419.45 847.23 33.50   0.00
35       4 -419.69 847.71 33.99   0.00
135      5 -418.74 847.96 34.24   0.00
5        3 -420.96 848.12 34.40   0.00
14       4 -419.94 848.20 34.48   0.00
457      5 -418.88 848.25 34.53   0.00
45       4 -420.45 849.23 35.51   0.00
7        3 -421.60 849.38 35.66   0.00
15       4 -420.70 849.72 36.00   0.00
145      5 -419.89 850.27 36.55   0.00
17       4 -420.99 850.29 36.57   0.00
37       4 -421.15 850.62 36.90   0.00
137      5 -420.96 852.41 38.69   0.00
(Null)   2 -424.23 852.56 38.84   0.00
1        3 -423.80 853.79 40.07   0.00
3        3 -424.15 854.50 40.78   0.00
13       4 -423.10 854.52 40.80   0.00

Term codes: 
  cicefree    cldepth clseasprod      cprod     cprod2  csalinity      ctemp 
         1          2          3          4          5          6          7 

Model-averaged coefficients:  
(full average) 
              Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)  1.430e+01  4.872e-01   4.920e-01  29.070  < 2e-16 ***
clseasprod  -2.521e+01  1.057e+01   1.063e+01   2.371   0.0178 *  
cprod       -3.482e-02  3.043e-02   3.058e-02   1.139   0.2548    
csalinity    9.334e-01  6.475e-01   6.494e-01   1.437   0.1506    
ctemp       -1.603e+00  3.812e-01   3.844e-01   4.170 3.04e-05 ***
cldepth      1.776e+00  2.326e+00   2.332e+00   0.761   0.4465    
cprod2      -2.781e-05  1.097e-04   1.102e-04   0.252   0.8009    
cicefree     7.191e-03  3.419e-02   3.438e-02   0.209   0.8343    
 
(conditional average) 
              Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)  1.430e+01  4.872e-01   4.920e-01  29.070  < 2e-16 ***
clseasprod  -2.619e+01  9.507e+00   9.579e+00   2.734  0.00625 ** 
cprod       -4.690e-02  2.610e-02   2.633e-02   1.782  0.07481 .  
csalinity    1.192e+00  4.769e-01   4.803e-01   2.481  0.01309 *  
ctemp       -1.609e+00  3.698e-01   3.731e-01   4.312 1.62e-05 ***
cldepth      3.414e+00  2.193e+00   2.206e+00   1.548  0.12165    
cprod2      -6.413e-05  1.594e-04   1.603e-04   0.400  0.68915    
cicefree     2.220e-02  5.723e-02   5.757e-02   0.386  0.69979    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
confint(yasuhara.ma)
                    2.5 %        97.5 %
(Intercept)  1.333804e+01 15.2666114702
clseasprod  -4.496777e+01 -7.4179250862
cprod       -9.849705e-02  0.0046952091
csalinity    2.503839e-01  2.1330064474
ctemp       -2.339799e+00 -0.8774189158
cldepth     -9.089778e-01  7.7378031678
cprod2      -3.783339e-04  0.0002500826
cicefree    -9.064154e-02  0.1350423590

Get standardized model averaged estimates

yasuhara.ma1<-model.avg(yasuhara.dredge, beta="sd")  #Code not running at moment
Error in h(simpleError(msg, call)) : 
  error in evaluating the argument 'x' in selecting a method for function 't': incorrect number of dimensions
summary(yasuhara.ma1)
Error in h(simpleError(msg, call)) : 
  error in evaluating the argument 'object' in selecting a method for function 'summary': object 'yasuhara.ma1' not found
confint(yasuhara.ma1)
Error: object 'yasuhara.ma1' not found
yasuhara.ma2<-model.avg(yasuhara.dredge, beta="partial.sd")
summary(yasuhara.ma2)

Call:
model.avg(object = get.models(object = yasuhara.dredge, subset = NA), 
    beta = "partial.sd")

Component model call: 
lm(formula = sprich ~ <128 unique rhs>, data = yasuhara)

Component models: 
        df  logLik   AICc delta weight
3467     6 -400.52 813.72  0.00   0.17
23467    7 -399.85 814.63  0.91   0.11
2347     6 -401.16 815.01  1.29   0.09
3567     6 -401.31 815.30  1.58   0.08
13467    7 -400.25 815.43  1.71   0.07
34567    7 -400.45 815.83  2.11   0.06
23567    7 -400.56 816.05  2.33   0.05
123467   8 -399.52 816.24  2.52   0.05
234567   8 -399.85 816.89  3.17   0.04
12347    7 -401.03 817.00  3.27   0.03
23457    7 -401.13 817.18  3.46   0.03
13567    7 -401.13 817.19  3.47   0.03
134567   8 -400.07 817.34  3.61   0.03
2357     6 -402.34 817.38  3.65   0.03
123567   8 -400.36 817.93  4.21   0.02
1234567  9 -399.45 818.41  4.69   0.02
123457   8 -400.95 819.09  5.37   0.01
12357    7 -402.32 819.57  5.85   0.01
1567     6 -403.63 819.94  6.22   0.01
1467     6 -403.86 820.41  6.69   0.01
367      5 -405.14 820.77  7.05   0.01
1367     6 -404.06 820.80  7.08   0.01
12567    7 -403.03 820.99  7.27   0.00
1257     6 -404.21 821.10  7.38   0.00
1247     6 -404.44 821.58  7.85   0.00
12467    7 -403.47 821.87  8.14   0.00
14567    7 -403.60 822.13  8.41   0.00
12367    7 -403.98 822.89  9.17   0.00
2367     6 -405.13 822.94  9.22   0.00
12457    7 -404.10 823.12  9.40   0.00
124567   8 -403.03 823.25  9.53   0.00
167      5 -406.84 824.17 10.45   0.00
1346     6 -405.94 824.58 10.85   0.00
12346    7 -405.33 825.59 11.87   0.00
13456    7 -405.35 825.62 11.90   0.00
1356     6 -406.68 826.04 12.32   0.00
136      5 -407.78 826.04 12.32   0.00
67       4 -408.96 826.25 12.53   0.00
1267     6 -406.82 826.33 12.61   0.00
1234     6 -406.95 826.59 12.87   0.00
123456   8 -404.93 827.06 13.33   0.00
12356    7 -406.12 827.16 13.44   0.00
12345    7 -406.50 827.93 14.21   0.00
1236     6 -407.64 827.97 14.25   0.00
267      5 -408.77 828.04 14.31   0.00
567      5 -408.79 828.07 14.35   0.00
467      5 -408.95 828.39 14.66   0.00
4567     6 -407.85 828.39 14.67   0.00
1235     6 -408.23 829.15 15.43   0.00
2567     6 -408.38 829.45 15.73   0.00
24567    7 -407.26 829.45 15.73   0.00
3457     6 -408.58 829.85 16.13   0.00
2467     6 -408.69 830.08 16.35   0.00
257      5 -409.90 830.29 16.57   0.00
237      5 -410.23 830.94 17.22   0.00
2457     6 -409.24 831.18 17.46   0.00
247      5 -410.55 831.59 17.87   0.00
1237     6 -409.54 831.77 18.05   0.00
27       4 -411.78 831.87 18.15   0.00
13457    7 -408.52 831.97 18.25   0.00
147      5 -410.84 832.16 18.44   0.00
347      5 -410.90 832.29 18.57   0.00
127      5 -411.00 832.50 18.77   0.00
1347     6 -410.19 833.06 19.34   0.00
1457     6 -410.43 833.55 19.83   0.00
123      5 -412.30 835.09 21.37   0.00
157      5 -413.72 837.93 24.21   0.00
1345     6 -413.16 839.00 25.28   0.00
56       4 -415.62 839.56 25.83   0.00
346      5 -414.60 839.69 25.97   0.00
234      5 -414.77 840.03 26.31   0.00
356      5 -414.80 840.08 26.36   0.00
1357     6 -413.72 840.13 26.41   0.00
46       4 -415.91 840.14 26.42   0.00
25       4 -416.00 840.31 26.59   0.00
357      5 -414.97 840.43 26.71   0.00
16       4 -416.06 840.44 26.72   0.00
235      5 -415.06 840.60 26.88   0.00
6        3 -417.34 840.88 27.15   0.00
24       4 -416.43 841.18 27.46   0.00
256      5 -415.42 841.33 27.61   0.00
156      5 -415.48 841.45 27.73   0.00
2346     6 -414.45 841.58 27.86   0.00
456      5 -415.56 841.60 27.88   0.00
2356     6 -414.58 841.85 28.13   0.00
3456     6 -414.59 841.88 28.16   0.00
134      5 -415.72 841.93 28.21   0.00
146      5 -415.77 842.02 28.30   0.00
246      5 -415.80 842.09 28.37   0.00
2345     6 -414.76 842.20 28.48   0.00
125      5 -415.94 842.37 28.65   0.00
245      5 -415.96 842.41 28.69   0.00
126      5 -416.02 842.54 28.82   0.00
36       4 -417.32 842.97 29.24   0.00
26       4 -417.32 842.97 29.25   0.00
1456     6 -415.23 843.15 29.43   0.00
1256     6 -415.28 843.25 29.53   0.00
124      5 -416.40 843.29 29.57   0.00
2456     6 -415.34 843.37 29.65   0.00
23456    7 -414.42 843.76 30.04   0.00
34       4 -417.73 843.78 30.05   0.00
1246     6 -415.66 844.00 30.28   0.00
12       4 -417.86 844.04 30.32   0.00
1245     6 -415.83 844.34 30.62   0.00
345      5 -417.16 844.80 31.08   0.00
12456    7 -414.97 844.86 31.14   0.00
236      5 -417.31 845.11 31.39   0.00
2        3 -419.67 845.54 31.81   0.00
47       4 -418.93 846.17 32.45   0.00
57       4 -419.34 847.00 33.28   0.00
4        3 -420.48 847.16 33.44   0.00
23       4 -419.45 847.23 33.50   0.00
35       4 -419.69 847.71 33.99   0.00
135      5 -418.74 847.96 34.24   0.00
5        3 -420.96 848.12 34.40   0.00
14       4 -419.94 848.20 34.48   0.00
457      5 -418.88 848.25 34.53   0.00
45       4 -420.45 849.23 35.51   0.00
7        3 -421.60 849.38 35.66   0.00
15       4 -420.70 849.72 36.00   0.00
145      5 -419.89 850.27 36.55   0.00
17       4 -420.99 850.29 36.57   0.00
37       4 -421.15 850.62 36.90   0.00
137      5 -420.96 852.41 38.69   0.00
(Null)   2 -424.23 852.56 38.84   0.00
1        3 -423.80 853.79 40.07   0.00
3        3 -424.15 854.50 40.78   0.00
13       4 -423.10 854.52 40.80   0.00

Term codes: 
  cicefree    cldepth clseasprod      cprod     cprod2  csalinity      ctemp 
         1          2          3          4          5          6          7 

Model-averaged coefficients:  
(full average) 
            Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)  0.00000    0.00000     0.00000     NaN      NaN    
clseasprod  -1.70344    0.68184     0.68517   2.486 0.012913 *  
cprod       -1.00671    0.83968     0.84176   1.196 0.231712    
csalinity    1.34872    1.05693     1.05868   1.274 0.202676    
ctemp       -2.34779    0.68559     0.68902   3.407 0.000656 ***
cldepth      0.63605    0.91534     0.91669   0.694 0.487774    
cprod2      -0.32017    0.72481     0.72623   0.441 0.659308    
cicefree     0.04612    0.46789     0.46955   0.098 0.921757    
 
(conditional average) 
            Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)   0.0000     0.0000      0.0000     NaN      NaN    
clseasprod   -1.7698     0.6046      0.6085   2.909 0.003629 ** 
cprod        -1.3560     0.6900      0.6934   1.956 0.050513 .  
csalinity     1.7220     0.8852      0.8878   1.939 0.052441 .  
ctemp        -2.3561     0.6724      0.6760   3.486 0.000491 ***
cldepth       1.2231     0.9451      0.9476   1.291 0.196767    
cprod2       -0.7384     0.9501      0.9526   0.775 0.438297    
cicefree      0.1424     0.8137      0.8167   0.174 0.861597    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
confint(yasuhara.ma2)
                  2.5 %       97.5 %
(Intercept)  0.00000000  0.000000000
clseasprod  -2.96240884 -0.577283501
cprod       -2.71499484  0.003028486
csalinity   -0.01817383  3.462099467
ctemp       -3.68091309 -1.031230881
cldepth     -0.63405782  3.080315443
cprod2      -2.60548788  1.128768004
cicefree    -1.45824644  1.743001809

Sum of akaike weights

sw(yasuhara.dredge)
                     ctemp clseasprod csalinity cprod cldepth cprod2 cicefree
Sum of weights:      1.00  0.96       0.78      0.74  0.52    0.43   0.32    
N containing models:   64    64         64        64    64      64     64    
#importance(yasuhara.dredge)   #importance is Decunct

Redo analysis by reducing collinearity

- omit prod squared and ice-free days

vif(lm(sprich~cldepth+ctemp+csalinity+cprod+clseasprod, data=yasuhara))
   cldepth      ctemp  csalinity      cprod clseasprod 
  4.165738   1.731734   4.822565   2.816215   2.954188 
cor(yasuhara[,c('cldepth','ctemp','csalinity','cprod','clseasprod')])
               cldepth      ctemp   csalinity       cprod  clseasprod
cldepth     1.00000000  0.3891785  0.84784714 -0.09488397 -0.08130645
ctemp       0.38917848  1.0000000  0.34629660  0.22755053 -0.52110033
csalinity   0.84784714  0.3462966  1.00000000 -0.32989442  0.05660052
cprod      -0.09488397  0.2275505 -0.32989442  1.00000000 -0.72386615
clseasprod -0.08130645 -0.5211003  0.05660052 -0.72386615  1.00000000
scatterplotMatrix(~sprich+cldepth+ctemp+csalinity+cprod+clseasprod, data=yasuhara, cex=0.25, regLine=FALSE, diagonal=list(method='boxplot'))

yasuhara.lm1 <- lm(sprich~cldepth+ctemp+csalinity+cprod+clseasprod, data=yasuhara)
plot(yasuhara.lm1)

influence.measures(yasuhara.lm1)
Influence measures of
     lm(formula = sprich ~ cldepth + ctemp + csalinity + cprod + clseasprod,      data = yasuhara) :
summary(yasuhara.lm1)

Call:
lm(formula = sprich ~ cldepth + ctemp + csalinity + cprod + clseasprod, 
    data = yasuhara)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.0085  -4.1007  -0.5914   3.3649  21.5832 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  14.30233    0.48414  29.542  < 2e-16 ***
cldepth       2.23836    1.98624   1.127  0.26196    
ctemp        -1.69692    0.30367  -5.588 1.40e-07 ***
csalinity     0.83020    0.52350   1.586  0.11534    
cprod        -0.04456    0.01377  -3.237  0.00155 ** 
clseasprod  -25.01814    5.88582  -4.251 4.18e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.499 on 123 degrees of freedom
Multiple R-squared:  0.3147,    Adjusted R-squared:  0.2869 
F-statistic:  11.3 on 5 and 123 DF,  p-value: 5.588e-09
confint(yasuhara.lm1)
                   2.5 %       97.5 %
(Intercept)  13.34400613  15.26064504
cldepth      -1.69326657   6.16999552
ctemp        -2.29800759  -1.09582645
csalinity    -0.20604108   1.86643110
cprod        -0.07180444  -0.01730728
clseasprod  -36.66875900 -13.36752083
std.coef(yasuhara.lm1, partial.sd=FALSE)
            Estimate* Std. Error*  df
(Intercept)  0.000000    0.000000 123
cldepth      0.171680    0.152342 123
ctemp       -0.548881    0.098223 123
csalinity    0.259943    0.163913 123
cprod       -0.405425    0.125259 123
clseasprod  -0.545308    0.128290 123
std.coef(yasuhara.lm1, partial.sd=TRUE)
            Estimate* Std. Error*  df
(Intercept)   0.00000     0.00000 123
cldepth       0.54559     0.48414 123
ctemp        -2.70540     0.48414 123
csalinity     0.76777     0.48414 123
cprod        -1.56701     0.48414 123
clseasprod   -2.05786     0.48414 123
calc.relimp(yasuhara.lm1, type = c("lmg", "pmvd", "last", "first", "betasq", "pratt"), rela=FALSE)
Response variable: sprich 
Total response variance: 42.40007 
Analysis based on 129 observations 

5 Regressors: 
cldepth ctemp csalinity cprod clseasprod 
Proportion of variance explained by model: 31.47%
Metrics are not normalized (rela=FALSE). 

Relative importance metrics: 

                  lmg       pmvd        last       first     betasq       pratt
cldepth    0.04438295 0.02835060 0.007075381 0.068259277 0.02947418  0.04485406
ctemp      0.10760292 0.09052456 0.173970310 0.040057552 0.30127025  0.10985512
csalinity  0.06734447 0.09635017 0.014011240 0.101320302 0.06757011  0.08274191
cprod      0.05206685 0.05101218 0.058365425 0.056471134 0.16436960  0.09634385
clseasprod 0.04334380 0.04850348 0.100657416 0.001220917 0.29736096 -0.01905395

Average coefficients for different model sizes: 

                    1X         2Xs          3Xs          4Xs          5Xs
cldepth     3.40636178  2.85470055   2.49515403   1.97259292   2.23836447
ctemp      -0.61876350 -0.85958909  -1.21281836  -1.49335017  -1.69691702
csalinity   1.01660221  1.09488127   1.10369224   1.10082495   0.83019501
cprod      -0.02611604 -0.02781194  -0.02855918  -0.03358681  -0.04455586
clseasprod  1.60308321 -3.55138802 -10.68948683 -17.90736403 -25.01813992
yasuhara.boot1 <- boot.relimp(yasuhara.lm1, b=1000, type = c("lmg", "pmvd"))
booteval.relimp(yasuhara.boot1)
Response variable: sprich 
Total response variance: 42.40007 
Analysis based on 129 observations 

5 Regressors: 
cldepth ctemp csalinity cprod clseasprod 
Proportion of variance explained by model: 31.47%
Metrics are not normalized (rela=FALSE). 

Relative importance metrics: 

                  lmg       pmvd
cldepth    0.04438295 0.02835060
ctemp      0.10760292 0.09052456
csalinity  0.06734447 0.09635017
cprod      0.05206685 0.05101218
clseasprod 0.04334380 0.04850348

Average coefficients for different model sizes: 

                    1X         2Xs          3Xs          4Xs          5Xs
cldepth     3.40636178  2.85470055   2.49515403   1.97259292   2.23836447
ctemp      -0.61876350 -0.85958909  -1.21281836  -1.49335017  -1.69691702
csalinity   1.01660221  1.09488127   1.10369224   1.10082495   0.83019501
cprod      -0.02611604 -0.02781194  -0.02855918  -0.03358681  -0.04455586
clseasprod  1.60308321 -3.55138802 -10.68948683 -17.90736403 -25.01813992

 
 Confidence interval information ( 1000 bootstrap replicates, bty= perc ): 
Relative Contributions with confidence intervals: 
 
                                 Lower  Upper
                percentage 0.95  0.95   0.95  
cldepth.lmg     0.0444     ABCDE 0.0150 0.1103
ctemp.lmg       0.1076     ABCDE 0.0312 0.2066
csalinity.lmg   0.0673     ABCDE 0.0269 0.1363
cprod.lmg       0.0521     ABCDE 0.0117 0.1425
clseasprod.lmg  0.0433     _BCDE 0.0213 0.0977
                                              
cldepth.pmvd    0.0284     ABCDE 0.0001 0.1705
ctemp.pmvd      0.0905     ABCD_ 0.0367 0.1723
csalinity.pmvd  0.0964     ABCDE 0.0003 0.2023
cprod.pmvd      0.0510     ABCDE 0.0108 0.1589
clseasprod.pmvd 0.0485     _BCDE 0.0247 0.0952

Letters indicate the ranks covered by bootstrap CIs. 
(Rank bootstrap confidence intervals always obtained by percentile method) 
CAUTION: Bootstrap confidence intervals can be somewhat liberal. 

 
 Differences between Relative Contributions: 
 
                                          Lower   Upper
                          difference 0.95 0.95    0.95   
cldepth-ctemp.lmg         -0.0632         -0.1655  0.0574
cldepth-csalinity.lmg     -0.0230         -0.0838  0.0372
cldepth-cprod.lmg         -0.0077         -0.1093  0.0846
cldepth-clseasprod.lmg     0.0010         -0.0686  0.0772
ctemp-csalinity.lmg        0.0403         -0.0779  0.1479
ctemp-cprod.lmg            0.0555         -0.0813  0.1655
ctemp-clseasprod.lmg       0.0643         -0.0369  0.1623
csalinity-cprod.lmg        0.0153         -0.0825  0.0900
csalinity-clseasprod.lmg   0.0240         -0.0469  0.0922
cprod-clseasprod.lmg       0.0087         -0.0522  0.0860
                                                         
cldepth-ctemp.pmvd        -0.0622         -0.1546  0.1053
cldepth-csalinity.pmvd    -0.0680         -0.1897  0.1646
cldepth-cprod.pmvd        -0.0227         -0.1406  0.1282
cldepth-clseasprod.pmvd   -0.0202         -0.0910  0.1302
ctemp-csalinity.pmvd      -0.0058         -0.1223  0.1208
ctemp-cprod.pmvd           0.0395         -0.0906  0.1334
ctemp-clseasprod.pmvd      0.0420         -0.0274  0.1197
csalinity-cprod.pmvd       0.0453         -0.1329  0.1736
csalinity-clseasprod.pmvd  0.0478         -0.0648  0.1558
cprod-clseasprod.pmvd      0.0025         -0.0461  0.0892

* indicates that CI for difference does not include 0. 
CAUTION: Bootstrap confidence intervals can be somewhat liberal. 
options(na.action = "na.fail")
yasuhara.dredge1 <-dredge(yasuhara.lm1, beta="none", evaluate=TRUE)
Fixed term is "(Intercept)"
yasuhara.dredge1
Global model call: lm(formula = sprich ~ cldepth + ctemp + csalinity + cprod + clseasprod, 
    data = yasuhara)
---
Model selection table 
   (Intrc)   cldpt    clssp     cprod  cslnt   ctemp df   logLik  AICc delta weight
31    14.3         -24.4200 -0.039950 1.3250 -1.6650  6 -400.517 813.7  0.00  0.454
32    14.3  2.2380 -25.0200 -0.044560 0.8302 -1.6970  7 -399.854 814.6  0.91  0.288
24    14.3  4.8830 -25.9700 -0.054010        -1.6350  6 -401.159 815.0  1.29  0.239
27    14.3         -12.0000           1.6320 -1.5870  5 -405.141 820.8  7.05  0.013
28    14.3  0.3288 -11.8700           1.5640 -1.5900  6 -405.126 822.9  9.22  0.005
25    14.3                            1.4070 -1.0900  4 -408.965 826.3 12.53  0.001
26    14.3  1.2080                    1.1670 -1.1210  5 -408.774 828.0 14.31  0.000
29    14.3                  -0.001752 1.3830 -1.0710  5 -408.949 828.4 14.66  0.000
30    14.3  1.4790          -0.004179 1.0570 -1.0830  6 -408.694 830.1 16.35  0.000
20    14.3  5.5210  -7.6080                  -1.3950  5 -410.228 830.9 17.22  0.000
22    14.3  4.8430          -0.014370        -0.9737  5 -410.550 831.6 17.87  0.000
18    14.3  5.2110                           -1.1000  4 -411.776 831.9 18.15  0.000
23    14.3         -25.7500 -0.061630        -1.1280  5 -410.902 832.3 18.57  0.000
15    14.3          -9.2040 -0.033800 0.7288          5 -414.600 839.7 25.97  0.000
8     14.3  2.7010 -10.2200 -0.041670                 5 -414.770 840.0 26.31  0.000
13    14.3                  -0.016360 0.8598          4 -415.909 840.1 26.42  0.000
9     14.3                            1.0170          3 -417.342 840.9 27.15  0.000
6     14.3  3.1410          -0.023600                 4 -416.427 841.2 27.46  0.000
16    14.3  1.2000  -9.3670 -0.036210 0.4571          6 -414.446 841.6 27.86  0.000
14    14.3  1.0140          -0.018130 0.6321          5 -415.801 842.1 28.37  0.000
11    14.3           0.7790           1.0140          4 -417.321 843.0 29.24  0.000
10    14.3 -0.3994                    1.1000          4 -417.323 843.0 29.25  0.000
7     14.3         -13.2100 -0.049020                 4 -417.727 843.8 30.05  0.000
12    14.3 -0.3164   0.6346           1.0800          5 -417.310 845.1 31.39  0.000
2     14.3  3.4060                                    3 -419.672 845.5 31.81  0.000
21    14.3                  -0.022260        -0.4762  4 -418.926 846.2 32.45  0.000
5     14.3                  -0.026120                 3 -420.483 847.2 33.44  0.000
4     14.3  3.4660   2.5950                           4 -419.452 847.2 33.50  0.000
17    14.3                                   -0.6188  3 -421.595 849.4 35.66  0.000
19    14.3          -4.3680                  -0.7721  4 -421.150 850.6 36.90  0.000
1     14.3                                            2 -424.232 852.6 38.84  0.000
3     14.3           1.6030                           3 -424.154 854.5 40.78  0.000
Models ranked by AICc(x) 
sw(yasuhara.dredge1)
                     ctemp clseasprod cprod csalinity cldepth
Sum of weights:      1.00  1.00       0.98  0.76      0.53   
N containing models:   16    16         16    16        16   
#importance(yasuhara.dredge1)
yasuhara.ma3<-model.avg(yasuhara.dredge1, beta="sd")
Error in h(simpleError(msg, call)) : 
  error in evaluating the argument 'x' in selecting a method for function 't': incorrect number of dimensions
summary(yasuhara.ma3)
Error in h(simpleError(msg, call)) : 
  error in evaluating the argument 'object' in selecting a method for function 'summary': object 'yasuhara.ma3' not found
confint(yasuhara.ma3)
Error: object 'yasuhara.ma3' not found
yasuhara.ma4<-model.avg(yasuhara.dredge1, beta="partial.sd")
summary(yasuhara.ma4)

Call:
model.avg(object = get.models(object = yasuhara.dredge1, subset = NA), 
    beta = "partial.sd")

Component model call: 
lm(formula = sprich ~ <32 unique rhs>, data = yasuhara)

Component models: 
       df  logLik   AICc delta weight
2345    6 -400.52 813.72  0.00   0.45
12345   7 -399.85 814.63  0.91   0.29
1235    6 -401.16 815.01  1.29   0.24
245     5 -405.14 820.77  7.05   0.01
1245    6 -405.13 822.94  9.22   0.00
45      4 -408.96 826.25 12.53   0.00
145     5 -408.77 828.04 14.31   0.00
345     5 -408.95 828.39 14.66   0.00
1345    6 -408.69 830.08 16.35   0.00
125     5 -410.23 830.94 17.22   0.00
135     5 -410.55 831.59 17.87   0.00
15      4 -411.78 831.87 18.15   0.00
235     5 -410.90 832.29 18.57   0.00
234     5 -414.60 839.69 25.97   0.00
123     5 -414.77 840.03 26.31   0.00
34      4 -415.91 840.14 26.42   0.00
4       3 -417.34 840.88 27.15   0.00
13      4 -416.43 841.18 27.46   0.00
1234    6 -414.45 841.58 27.86   0.00
134     5 -415.80 842.09 28.37   0.00
24      4 -417.32 842.97 29.24   0.00
14      4 -417.32 842.97 29.25   0.00
23      4 -417.73 843.78 30.05   0.00
124     5 -417.31 845.11 31.39   0.00
1       3 -419.67 845.54 31.81   0.00
35      4 -418.93 846.17 32.45   0.00
3       3 -420.48 847.16 33.44   0.00
12      4 -419.45 847.23 33.50   0.00
5       3 -421.60 849.38 35.66   0.00
25      4 -421.15 850.62 36.90   0.00
(Null)  2 -424.23 852.56 38.84   0.00
2       3 -424.15 854.50 40.78   0.00

Term codes: 
   cldepth clseasprod      cprod  csalinity      ctemp 
         1          2          3          4          5 

Model-averaged coefficients:  
(full average) 
            Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)   0.0000     0.0000      0.0000     NaN      NaN    
clseasprod   -2.0447     0.5036      0.5082   4.023 5.74e-05 ***
cprod        -1.6217     0.5915      0.5954   2.724  0.00645 ** 
csalinity     1.2954     1.0576      1.0593   1.223  0.22138    
ctemp        -2.6654     0.4872      0.4920   5.418 1.00e-07 ***
cldepth       0.6806     0.9453      0.9467   0.719  0.47217    
 
(conditional average) 
            Estimate Std. Error Adjusted SE z value Pr(>|z|)    
(Intercept)   0.0000     0.0000      0.0000     NaN      NaN    
clseasprod   -2.0483     0.4967      0.5014   4.085  4.4e-05 ***
cprod        -1.6536     0.5514      0.5557   2.976  0.00292 ** 
csalinity     1.7019     0.8819      0.8845   1.924  0.05434 .  
ctemp        -2.6654     0.4871      0.4919   5.418  6.0e-08 ***
cldepth       1.2805     0.9556      0.9581   1.337  0.18136    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
confint(yasuhara.ma4)
                  2.5 %     97.5 %
(Intercept)  0.00000000  0.0000000
clseasprod  -3.03090465 -1.0656097
cprod       -2.74267932 -0.5644916
csalinity   -0.03169398  3.4354804
ctemp       -3.62951109 -1.7012384
cldepth     -0.59724609  3.1582464
LS0tCnRpdGxlOiAiUUsgQm94IDkuMiIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0aGVtZTogZmxhdGx5Ci0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgpXZSBmaXR0ZWQgYSBtb2RlbCByZWxhdGluZyBzcGVjaWVzIHJpY2huZXNzIG9mIHNoYWxsb3cgd2F0ZXIgb3N0cmFjb2RzIHRvIHNldmVuIGVudmlyb25tZW50YWwgcHJlZGljdG9yczogd2F0ZXIgZGVwdGgsIGJvdHRvbSB3YXRlciB0ZW1wZXJhdHVyZSwgc2FsaW5pdHksIHByb2R1Y3Rpdml0eSAocGFydGljdWxhdGUgb3JnYW5pYyBjYXJib24gZmx1eCB0byBvY2VhbiBmbG9vciksIHByb2R1Y3Rpdml0eSBzcXVhcmVkIChiZWNhdXNlIG9mIGNvbW1vbmx5IG9ic2VydmVkIGh1bXAtc2hhcGVkIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiByaWNobmVzcyBhbmQgcHJvZHVjdGl2aXR5IGluIG1hcmluZSBzeXN0ZW1zKSwgc2Vhc29uYWwgdmFyaWF0aW9uIGluIHByb2R1Y3Rpdml0eSwgYW5kIHRoZSBhbm51YWwgbnVtYmVyIG9mIGljZS1mcmVlIGRheXM7IG4gPSAxMjkpLiBUbyBiZSBjb25zaXN0ZW50IHdpdGggWWFzdWhhcmEgZXQgYWwncyBvcmlnaW5hbCBhbmFseXNpcywgd2F0ZXIgZGVwdGggYW5kIHNlYXNvbmFsIHZhcmlhdGlvbiBpbiBwcm9kdWN0aXZpdHkgd2VyZSBib3RoIHBvc2l0aXZlbHkgc2tld2VkIGFuZCB3ZXJlIGxvZy10cmFuc2Zvcm1lZCwgYWx0aG91Z2ggdGhlIHNhbWUgYXJndW1lbnQgY291bGQgaGF2ZSBiZWVuIHVzZWQgZm9yIHRlbXBlcmF0dXJlLiBBZGRpdGlvbmFsbHksIGFsbCBwcmVkaWN0b3JzIHdlcmUgY2VudGVyZWQ7IG5vdGUgdGhhdCBjZW50ZXJpbmcgZG9lcyBub3QgYWZmZWN0IHRoZSByZWNvbW1lbmRlZCBtZWFzdXJlcyBvZiByZWxhdGl2ZSBpbXBvcnRhbmNlLgoKWyFbXSguLi9tZWRpYS8xMDI0cHgtT3N0cmFjb2QuSlBHKXt3aWR0aD0iNTEyIn1dKGh0dHBzOi8vdXBsb2FkLndpa2ltZWRpYS5vcmcvd2lraXBlZGlhL2NvbW1vbnMvOS85My9Pc3RyYWNvZC5KUEcpCgpPc3RyYWNvZC4gQW5uYSBTeW1lLCBbQ0MgQXR0cmlidXRpb24gMi41IEdlbmVyaWNdKGh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS8yLjUvZGVlZC5lbikKClRoZSBwYXBlciBpcyBbaGVyZV0oaHR0cHM6Ly9kb2kub3JnLzEwLjExMTEvai4xMzY1LTI2OTkuMjAxMi4wMjc1OC54KQoKWWFzdWhhcmEsIE0uLCBIdW50LCBHLiwgdmFuIERpamtlbiwgRy4sIEFycmlnbywgSy4gUi4sIENyb25pbiwgVC4gTS4gJiBXb2xsZW5idXJnLCBKLiBFLiAoMjAxMikuIFBhdHRlcm5zIGFuZCBjb250cm9sbGluZyBmYWN0b3JzIG9mIHNwZWNpZXMgZGl2ZXJzaXR5IGluIHRoZSBBcmN0aWMgT2NlYW4uICpKb3VybmFsIG9mIEJpb2dlb2dyYXBoeSosIDM5LCAyMDgxLTg4LgoKIyMjIFByZWxpbWluYXJpZXMKCkZpcnN0LCBsb2FkIHRoZSByZXF1aXJlZCBwYWNrYWdlcyAocmVsYWltcG8sIGNhciwgaGllci5wYXJ0LCBNdU1JbiwgbG0uYmV0YSkKCmBgYHtyIGluY2x1ZGU9RkFMU0UsIHJlc3VsdHM9J2hpZGUnLCBlcnJvcj1UUlVFfQpzb3VyY2UoIi4uL1IvbGlicmFyaWVzLlIiKSAgICNUaGlzIGlzIHRoZSBjb21tb24gbGlicmFyeQpsaWJyYXJ5KGhpZXIucGFydCkgICAgICNObyBsb25nZXIgYXZhaWxhYmxlIGluIENSQU4KbGlicmFyeShyZWxhaW1wbykKbGlicmFyeShsbS5iZXRhKQpgYGAKCkltcG9ydCB5YXN1aGFyYSBkYXRhIGZpbGUgKFt5YXN1aGFyYS5jc3ZdKC4uL2RhdGEveWFzdWhhcmEuY3N2KSkKCioqTm90ZSoqIHRoYXQgeWFzdWhhcmFfc2FsbW9kIGlzIGFjdHVhbGx5IHRoZSBmaWxlIHRoYXQncyBpbXBvcnRlZCBmb3Igbm93OyBpdCBpcyBhIHN1YnNldCBvZiB0aGUgZnVsbCBkYXRhIHNldCwgd2l0aCBzb21lIGxvdyBzYWwgdmFsdWVzIHJlbW92ZWQuIFRoaXMgaXMgdGhlIGRhdGEgdXNlZCBmb3IgYW5hbHlzaXMgaW4gdGhlIHBhcGVyLgoKKipOb3RlLioqIFRoZSB5YXN1aGFyYSBmaWxlIGFzc29jaWF0ZWQgd2l0aCB0aGUgcGFwZXIgaXMgdGhlIGZ1bGwgZGF0YSBzZXQuIFRoZSBhbmFseXNlcyBvZiBzaGFsbG93LXdhdGVyIG9zdHJhY29kcyB1c2VkIGEgc3Vic2V0IG9mIHRoYXQgZGF0YS4gRm91ciBkZWVwIHNpdGVzIChkZXB0aCBcPjIwMG0pIHdlcmUgZXhjbHVkZWQsIGFzIHdlcmUgdGhyZWUgd2l0aCBhIGZyZXNod2F0ZXIgaW5mbHVlbmNlIChzYWxpbml0eSBcPDIxKQoKYGBge3J9Cnlhc3VoYXJhIDwtIHJlYWQuY3N2KCIuLi9kYXRhL3lhc3VoYXJhLmNzdiIpCnlhc3VoYXJhIDwtIHN1YnNldCh5YXN1aGFyYSwgc2FsaW5pdHk+MjEgJiBkZXB0aCA8PSAyMDApCmhlYWQoeWFzdWhhcmEsMTApCmBgYAoKIyMgRmlyc3Qgd2UgcmVwZWF0IHNoYWxsb3ctd2F0ZXIgb3N0cmFjb2QgYW5hbHlzaXMgYXMgaW4gVGFibGUgMSBvZiBwYXBlcgoKKipOb3RlOioqIGhhdmUgY2hhbmdlZCBvcmlnaW5hbCBjc3YgZmlsZSBuYW1lcyB0byBtYXRjaCB0aG9zZSBpbiBjb2RlIGJlbG93CgojIyMgU2NhdHRlcnBsb3QgbWF0cml4CgpgYGB7ciB9CnNjYXR0ZXJwbG90TWF0cml4KH5zcHJpY2grZGVwdGgrdGVtcCtzYWxpbml0eStwcm9kK3NlYXNwcm9kK2ljZWZyZWUsIGRhdGE9eWFzdWhhcmEsIGNleD0uNSwgcmVnTGluZT1GQUxTRSwgZGlhZ29uYWw9bGlzdChtZXRob2Q9J2JveHBsb3QnKSkKYGBgCgpUcmFuc2Zvcm0gdmFyaWFibGVzIGFzIG5lZWRlZCwgaW5jbHVkaW5nIHF1YWRyYXRpYyBmb3IgcHJvZHVjdGl2aXR5CgpDZW50ZXIgcHJlZGljdG9ycyBhcyB3ZWxsCgpgYGB7cn0KeWFzdWhhcmEkcHJvZDIgPC0gKHlhc3VoYXJhJHByb2QpXjIKeWFzdWhhcmEkbGRlcHRoIDwtIGxvZzEwKHlhc3VoYXJhJGRlcHRoKQp5YXN1aGFyYSRsc2Vhc3Byb2QgPC0gbG9nMTAoeWFzdWhhcmEkc2Vhc3Byb2QpCnlhc3VoYXJhJGNsZGVwdGggPC0gc2NhbGUoeWFzdWhhcmEkbGRlcHRoLCBjZW50ZXI9VFJVRSwgc2NhbGU9RkFMU0UpCnlhc3VoYXJhJGN0ZW1wIDwtIHNjYWxlKHlhc3VoYXJhJHRlbXAsIGNlbnRlcj1UUlVFLCBzY2FsZT1GQUxTRSkKeWFzdWhhcmEkY3NhbGluaXR5IDwtIHNjYWxlKHlhc3VoYXJhJHNhbGluaXR5LCBjZW50ZXI9VFJVRSwgc2NhbGU9RkFMU0UpCnlhc3VoYXJhJGNwcm9kIDwtIHNjYWxlKHlhc3VoYXJhJHByb2QsIGNlbnRlcj1UUlVFLCBzY2FsZT1GQUxTRSkKeWFzdWhhcmEkY3Byb2QyIDwtIHNjYWxlKHlhc3VoYXJhJHByb2QyLCBjZW50ZXI9VFJVRSwgc2NhbGU9RkFMU0UpCnlhc3VoYXJhJGNsc2Vhc3Byb2QgPC0gc2NhbGUoeWFzdWhhcmEkbHNlYXNwcm9kLCBjZW50ZXI9VFJVRSwgc2NhbGU9RkFMU0UpCnlhc3VoYXJhJGNpY2VmcmVlIDwtIHNjYWxlKHlhc3VoYXJhJGljZWZyZWUsIGNlbnRlcj1UUlVFLCBzY2FsZT1GQUxTRSkKYGBgCgpHZXQgVklGcyB0byBjaGVjayBmb3IgY29sbGluZWFyaXR5IGlzc3VlczsgYWxzbyBsb29rIGF0IGNvcnJlbGF0aW9ucyBGaXQgcmVncmVzc2lvbiBtb2RlbCB0byBnZXQgaW5mbHVlbmNlIG1lYXN1cmVzCgpgYGB7cn0KdmlmKGxtKHNwcmljaH5jbGRlcHRoK2N0ZW1wK2NzYWxpbml0eStjcHJvZCtjcHJvZDIrY2xzZWFzcHJvZCtjaWNlZnJlZSwgZGF0YT15YXN1aGFyYSkpCmNvcih5YXN1aGFyYVssYygnY2xkZXB0aCcsJ2N0ZW1wJywnY3NhbGluaXR5JywnY3Byb2QnLCdjcHJvZDInLCdjbHNlYXNwcm9kJywnY2ljZWZyZWUnKV0pCnNjYXR0ZXJwbG90TWF0cml4KH5zcHJpY2grY2xkZXB0aCtjdGVtcCtjc2FsaW5pdHkrY3Byb2QrY3Byb2QyK2Nsc2Vhc3Byb2QrY2ljZWZyZWUsIGRhdGE9eWFzdWhhcmEsIGNleD0uNSwgcmVnTGluZT1GQUxTRSwgZGlhZ29uYWw9bGlzdChtZXRob2Q9J2JveHBsb3QnKSkKeWFzdWhhcmEubG0gPC0gbG0oc3ByaWNofmNsZGVwdGgrY3RlbXArY3NhbGluaXR5K2Nwcm9kK2Nwcm9kMitjbHNlYXNwcm9kK2NpY2VmcmVlLCBkYXRhPXlhc3VoYXJhKQpwbG90KHlhc3VoYXJhLmxtKQphdWdtZW50KHlhc3VoYXJhLmxtKQoKYGBgCgpFeGFtaW5lIG1vZGVsIG91dHB1dAoKYGBge3J9CnRpZHkoeWFzdWhhcmEubG0sIGNvbmYuaW50PVRSVUUpCmBgYAoKIyMjIFN0YW5kYXJkaXplZCBjb2VmZmljaWVudHMgKHVzdWFsKQoKYGBge3IgfQpsbS5iZXRhLnlhc3VoYXJhIDwtIGxtLmJldGEoeWFzdWhhcmEubG0pCmxtLmJldGEueWFzdWhhcmEKYGBgCgojIyMgc3RhbmRhcmRpemVkIGNvZWZmaWNpZW50cyAoYm90aCB1c3VhbCBhbmQgcGFydGlhbCBzZCkKCmBgYHtyIH0Kc3RkLmNvZWYoeWFzdWhhcmEubG0sIHBhcnRpYWwuc2Q9RkFMU0UpCnN0ZC5jb2VmKHlhc3VoYXJhLmxtLCBwYXJ0aWFsLnNkPVRSVUUpCmBgYAoKIyMgUmVsYXRpdmUgaW1wb3J0YW5jZSBtZXRyaWNzCgpgYGB7ciB9CmNhbGMucmVsaW1wKHlhc3VoYXJhLmxtLCB0eXBlID0gYygibG1nIiwgInBtdmQiLCAibGFzdCIsICJmaXJzdCIsICJiZXRhc3EiLCAicHJhdHQiKSwgcmVsYT1GQUxTRSkKeWFzdWhhcmEuYm9vdCA8LSBib290LnJlbGltcCh5YXN1aGFyYS5sbSwgYj0xMDAwLCB0eXBlID0gYygibG1nIiwgInBtdmQiKSkKYm9vdGV2YWwucmVsaW1wKHlhc3VoYXJhLmJvb3QpCmBgYAoKIyMjIENvbXBhcmUgdG8gdW5jZW50ZXJlZCBwcmVkaWN0b3JzIC0gbm8gY2hhbmdlIGluIGNvbmNsdXNpb25zCgpgYGB7ciB9Cnlhc3VoYXJhLmxtMSA8LSBsbShzcHJpY2h+bGRlcHRoK3RlbXArc2FsaW5pdHkrcHJvZCtsc2Vhc3Byb2QraWNlZnJlZSwgZGF0YT15YXN1aGFyYSkKdmlmKGxtKHNwcmljaH5sZGVwdGgrdGVtcCtzYWxpbml0eStwcm9kK2xzZWFzcHJvZCtpY2VmcmVlLCBkYXRhPXlhc3VoYXJhKSkKc3VtbWFyeSh5YXN1aGFyYS5sbTEpCmNhbGMucmVsaW1wKHlhc3VoYXJhLmxtLCB0eXBlID0gYygibG1nIiwgInBtdmQiLCAibGFzdCIsICJmaXJzdCIsICJiZXRhc3EiLCAicHJhdHQiKSwgcmVsYT1GQUxTRSkKYGBgCgojIyBOb3cgaGllcmFyY2hpY2FsIHBhcnRpdGlvbmluZwoKVGhpcyBzdGVwIHVzZXMgdGhlIHN1YnNldHMgb2YgdGhlIG9yaWdpbmFsIGRhdGFmcmFtZSBpbnRvIHJlc3BvbnNlIGFuZCBwcmVkaWN0b3JzLgoKYGBge3IgZXJyb3I9VFJVRX0KeWFzdWhhcmFfc3ByaWNoPC15YXN1aGFyYSRzcHJpY2gKeWFzdWhhcmFfcHJlZDwtc3Vic2V0KHlhc3VoYXJhLCBzZWxlY3QgPSBjKCJjbGRlcHRoIiwiY3RlbXAiLCJjc2FsaW5pdHkiLCJjbHNlYXNwcm9kIiwiY2ljZWZyZWUiLCJjcHJvZCIsICJjcHJvZDIiKSkKaGllci5wYXJ0KHlhc3VoYXJhX3NwcmljaCwgeWFzdWhhcmFfcHJlZCwgZmFtaWx5PSJnYXVzc2lhbiIsIGdvZj0iUnNxdSIpCmBgYAoKVGhlIHBhY2thZ2UgaGllci5wYXJ0IHdhcyByZW1vdmVkIGZyb20gQ1JBTiBpbiBNYXJjaCAyMDIzLiBUaGUgY29kZSBhYm92ZSB3aWxsIHdvcmsgaWYgeW91IGhhdmUgaGllci5wYXJ0IGluc3RhbGxlZCBhbHJlYWR5LiBBbiBhbHRlcm5hdGl2ZSBpcyB0byB1c2UgdGhlIHBhY2thZ2UgKmdsbW0uaHAqLCB3aGljaCBpcyBkb25lIGluIHRoZSBuZXh0IGNvZGUgY2h1bmsuCgpIaWVyLnBhcnQgY2FuIGFsc28gYmUgaW5zdGFsbGVkIGZyb20gR2l0aHViLCB0aG91Z2ggdGhlcmUgbWF5IGJlIGlzc3VlcyB3aXRoIE0xL00yIE1hY3MuIFRoZSBxdWljayB3YXkgZnJvbSBHaXRodWIgaXMgdXNpbmcgZGV2dG9vbHM6IGRldnRvb2xzOjppbnN0YWxsX2dpdGh1YigiY2pid2Fsc2gvaGllci5wYXJ0IikKCmBgYHtyfQpsaWJyYXJ5IChnbG1tLmhwKQpnbG1tLmhwKHlhc3VoYXJhLmxtLCB0eXBlPSJSMiIpCmBgYAoKIyMgTW9kZWwgc2VsZWN0aW9uCgpgYGB7ciB9Cm9wdGlvbnMobmEuYWN0aW9uID0gIm5hLmZhaWwiKQp5YXN1aGFyYS5kcmVkZ2UgPC1kcmVkZ2UoeWFzdWhhcmEubG0sIGJldGE9Im5vbmUiLCBldmFsdWF0ZT1UUlVFKQp5YXN1aGFyYS5kcmVkZ2UKYGBgCgphYm92ZSByZXN1bHRzIG1hdGNoIHRhYmxlIDEgaW4gcGFwZXIKCiMjIE1vZGVsIGF2ZXJhZ2luZwoKYGBge3IgfQp5YXN1aGFyYS5tYTwtbW9kZWwuYXZnKHlhc3VoYXJhLmRyZWRnZSkKc3VtbWFyeSh5YXN1aGFyYS5tYSkKY29uZmludCh5YXN1aGFyYS5tYSkKYGBgCgojIyMgR2V0IHN0YW5kYXJkaXplZCBtb2RlbCBhdmVyYWdlZCBlc3RpbWF0ZXMKCmBgYHtyIGVycm9yPVRSVUV9Cnlhc3VoYXJhLm1hMTwtbW9kZWwuYXZnKHlhc3VoYXJhLmRyZWRnZSwgYmV0YT0ic2QiKSAgI0NvZGUgbm90IHJ1bm5pbmcgYXQgbW9tZW50CnN1bW1hcnkoeWFzdWhhcmEubWExKQpjb25maW50KHlhc3VoYXJhLm1hMSkKeWFzdWhhcmEubWEyPC1tb2RlbC5hdmcoeWFzdWhhcmEuZHJlZGdlLCBiZXRhPSJwYXJ0aWFsLnNkIikKc3VtbWFyeSh5YXN1aGFyYS5tYTIpCmNvbmZpbnQoeWFzdWhhcmEubWEyKQpgYGAKCiMjIyBTdW0gb2YgYWthaWtlIHdlaWdodHMKCmBgYHtyIH0Kc3coeWFzdWhhcmEuZHJlZGdlKQojaW1wb3J0YW5jZSh5YXN1aGFyYS5kcmVkZ2UpICAgI2ltcG9ydGFuY2UgaXMgRGVjdW5jdApgYGAKCiMjIFJlZG8gYW5hbHlzaXMgYnkgcmVkdWNpbmcgY29sbGluZWFyaXR5CgoqKi0gb21pdCBwcm9kIHNxdWFyZWQgYW5kIGljZS1mcmVlIGRheXMqKgoKYGBge3IgZXJyb3I9VFJVRX0KdmlmKGxtKHNwcmljaH5jbGRlcHRoK2N0ZW1wK2NzYWxpbml0eStjcHJvZCtjbHNlYXNwcm9kLCBkYXRhPXlhc3VoYXJhKSkKY29yKHlhc3VoYXJhWyxjKCdjbGRlcHRoJywnY3RlbXAnLCdjc2FsaW5pdHknLCdjcHJvZCcsJ2Nsc2Vhc3Byb2QnKV0pCnNjYXR0ZXJwbG90TWF0cml4KH5zcHJpY2grY2xkZXB0aCtjdGVtcCtjc2FsaW5pdHkrY3Byb2QrY2xzZWFzcHJvZCwgZGF0YT15YXN1aGFyYSwgY2V4PTAuMjUsIHJlZ0xpbmU9RkFMU0UsIGRpYWdvbmFsPWxpc3QobWV0aG9kPSdib3hwbG90JykpCnlhc3VoYXJhLmxtMSA8LSBsbShzcHJpY2h+Y2xkZXB0aCtjdGVtcCtjc2FsaW5pdHkrY3Byb2QrY2xzZWFzcHJvZCwgZGF0YT15YXN1aGFyYSkKcGxvdCh5YXN1aGFyYS5sbTEpCmluZmx1ZW5jZS5tZWFzdXJlcyh5YXN1aGFyYS5sbTEpCnN1bW1hcnkoeWFzdWhhcmEubG0xKQpjb25maW50KHlhc3VoYXJhLmxtMSkKc3RkLmNvZWYoeWFzdWhhcmEubG0xLCBwYXJ0aWFsLnNkPUZBTFNFKQpzdGQuY29lZih5YXN1aGFyYS5sbTEsIHBhcnRpYWwuc2Q9VFJVRSkKY2FsYy5yZWxpbXAoeWFzdWhhcmEubG0xLCB0eXBlID0gYygibG1nIiwgInBtdmQiLCAibGFzdCIsICJmaXJzdCIsICJiZXRhc3EiLCAicHJhdHQiKSwgcmVsYT1GQUxTRSkKeWFzdWhhcmEuYm9vdDEgPC0gYm9vdC5yZWxpbXAoeWFzdWhhcmEubG0xLCBiPTEwMDAsIHR5cGUgPSBjKCJsbWciLCAicG12ZCIpKQpib290ZXZhbC5yZWxpbXAoeWFzdWhhcmEuYm9vdDEpCm9wdGlvbnMobmEuYWN0aW9uID0gIm5hLmZhaWwiKQp5YXN1aGFyYS5kcmVkZ2UxIDwtZHJlZGdlKHlhc3VoYXJhLmxtMSwgYmV0YT0ibm9uZSIsIGV2YWx1YXRlPVRSVUUpCnlhc3VoYXJhLmRyZWRnZTEKc3coeWFzdWhhcmEuZHJlZGdlMSkKI2ltcG9ydGFuY2UoeWFzdWhhcmEuZHJlZGdlMSkKeWFzdWhhcmEubWEzPC1tb2RlbC5hdmcoeWFzdWhhcmEuZHJlZGdlMSwgYmV0YT0ic2QiKQpzdW1tYXJ5KHlhc3VoYXJhLm1hMykKY29uZmludCh5YXN1aGFyYS5tYTMpCnlhc3VoYXJhLm1hNDwtbW9kZWwuYXZnKHlhc3VoYXJhLmRyZWRnZTEsIGJldGE9InBhcnRpYWwuc2QiKQpzdW1tYXJ5KHlhc3VoYXJhLm1hNCkKY29uZmludCh5YXN1aGFyYS5tYTQpCmBgYAo=