Steiger et al. (2008) studied the Coolidge effect, the decline in males’ interest in mating with the same female compared to novel females, using the burying beetle Nicrophorus vespilloides. Eighteen male beetles were presented with the same female beetle four times, and then a novel female on the fifth occasion. This was a repeated measures design as the same individual males were repeatedly presented with females. There was no evidence that physical exhaustion affected time to mating as a separate control group of males were presented with novel, unmated females five times in succession, and there was no change in time to mating. The within-subjects factor was the order of presented females, and while this could have been treated as a continuous covariate, we treated it as a fixed factor with five groups. The response variable recorded on each occasion was time to mating.
Francisco Welter-Schultes, CC0, via Wikimedia Commons
Steiger, S., Franz, R., Eggert, A. K. & Muller, J. K. (2008). The Coolidge effect, individual recognition and selection for distinctive cuticular signatures in a burying beetle. Proceedings of the Royal Society B, 275, 1831-8.
Link to the paper: doi: 10.1098/rspb.2008.0375 and data
First, load the required packages (afex, car, lattice, lme4, lmerTest, nlme, VCA, ez, emmeans, Rmisc, MuMIn)
Import steiger data file (steiger.csv)
steiger <- read.csv("../data/steiger.csv")
steiger
Set contrasts from afex. Make individual a factor Rearrange matingnumber order to override default alphabetical order
set_sum_contrasts()
steiger$individual <- factor(steiger$individual)
steiger$matingnumber <- factor(steiger$matingnumber, levels=c("first","second","third","fourth","fifth"))
Quick boxplot to look at variances for different mating numbers
boxplot(time~matingnumber, data=steiger)
steiger.aov <- aov(time~matingnumber+individual, data=steiger)
Check residuals - some evidence for interaction
plot(steiger.aov)
interaction.plot(steiger$matingnumber, steiger$individual, steiger$time)
The rank order of treatments consistent but the sizes of the differences vary greatly between individuals. Quickly try boxplot with log-transformed data to see if any improvement
boxplot(log10(time)~matingnumber, data=steiger)
steiger$ltime <- log10(steiger$time)
Recheck diagnostics - much better with less interaction
boxplot(ltime~matingnumber, data=steiger)
interaction.plot(steiger$matingnumber, steiger$individual, steiger$ltime)
steiger.aov1 <- aov(ltime~matingnumber+individual, data=steiger)
check residuals - look OK
plot(steiger.aov1)
Once we’re happy with the model that we’re fitting, we can look at the results.
tidy(steiger.aov1)
emmeans(steiger.aov1, "matingnumber")
matingnumber emmean SE df lower.CL upper.CL
first 1.47 0.136 68 1.20 1.74
second 1.83 0.136 68 1.56 2.10
third 2.01 0.136 68 1.74 2.28
fourth 2.14 0.136 68 1.87 2.41
fifth 1.35 0.136 68 1.08 1.62
Results are averaged over the levels of: individual
Confidence level used: 0.95
Get Greenhouse Geiser adjusted results
ezsteiger1 <- ezANOVA(data=steiger, dv=ltime, wid=individual, within=matingnumber, type=3, detailed=TRUE)
print(ezsteiger1)
$ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges
1 (Intercept) 1 17 278.55 6.72 704.49 2.81e-15 * 0.905
2 matingnumber 4 68 8.36 22.50 6.32 2.20e-04 * 0.222
$`Mauchly's Test for Sphericity`
Effect W p p<.05
2 matingnumber 0.431 0.166
$`Sphericity Corrections`
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 matingnumber 0.678 0.00155 * 0.819 0.000657 *
Use VCA package to get anova var comps (with CIs that can be -ve)
steiger.vca <- anovaMM(ltime~matingnumber+(individual), steiger)
steiger.vca
ANOVA-Type Estimation of Mixed Model:
--------------------------------------
[Fixed Effects]
int matingnumberfifth matingnumberfirst matingnumberfourth matingnumbersecond matingnumberthird
2.009 -0.658 -0.544 0.131 -0.180 0.000
[Variance Components]
Name DF SS MS VC %Total SD CV[%]
1 total 84.524647 0.34383 100 0.58637 33.330258
2 individual 17 6.721791 0.395399 0.012892 3.749614 0.113544 6.454044
3 error 68 22.503779 0.330938 0.330938 96.250386 0.575272 32.69941
Mean: 1.76 (N = 90)
Experimental Design: balanced | Method: ANOVA
VCAinference(steiger.vca, alpha=0.05, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE)
Inference from Mixed Model Fit
------------------------------
> VCA Result:
-------------
[Fixed Effects]
int matingnumberfifth matingnumberfirst matingnumberfourth matingnumbersecond matingnumberthird
2.009 -0.657 -0.543 0.131 -0.180 0.000
[Variance Components]
Name DF SS MS VC %Total SD CV[%] Var(VC)
1 total 84.5246 0.3438 100 0.5864 33.3303 0.0028
2 individual 17 6.7218 0.3954 0.0129 3.7496 0.1135 6.454 9e-04
3 error 68 22.5038 0.3309 0.3309 96.2504 0.5753 32.6994 0.0032
Mean: 1.76 (N = 90)
Experimental Design: balanced | Method: ANOVA
> VC:
-----
Estimate CI LCL CI UCL One-Sided LCL One-Sided UCL
total 0.3438 0.2598 0.4765 0.2716 0.4517
individual 0.0129 -0.0447 0.0705 -0.0355 0.0613
error 0.3309 0.2428 0.4779 0.2550 0.4499
> SD:
-----
Estimate CI LCL CI UCL One-Sided LCL One-Sided UCL
total 0.586 0.510 0.690 0.521 0.672
individual 0.114 -0.211 0.266 -0.188 0.247
error 0.575 0.493 0.691 0.505 0.671
> CV[%]:
--------
Estimate CI LCL CI UCL One-Sided LCL One-Sided UCL
total 33.33 29 39.2 29.6 38.2
individual 6.45 -12 15.1 -10.7 14.1
error 32.70 28 39.3 28.7 38.1
95% Confidence Level
SAS PROC MIXED method used for computing CIs
steiger.lmer1 <- lmer(ltime~matingnumber + (1|individual), REML=TRUE, steiger)
summary(steiger.lmer1, ddf="Kenward-Roger")
Linear mixed model fit by REML. t-tests use Kenward-Roger's method ['lmerModLmerTest']
Formula: ltime ~ matingnumber + (1 | individual)
Data: steiger
REML criterion at convergence: 168
Scaled residuals:
Min 1Q Median 3Q Max
-1.921 -0.815 0.205 0.698 1.927
Random effects:
Groups Name Variance Std.Dev.
individual (Intercept) 0.0129 0.114
Residual 0.3309 0.575
Number of obs: 90, groups: individual, 18
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 1.7593 0.0663 17.0000 26.54 2.8e-15 ***
matingnumber1 -0.2934 0.1213 68.0000 -2.42 0.0182 *
matingnumber2 0.0700 0.1213 68.0000 0.58 0.5657
matingnumber3 0.2501 0.1213 68.0000 2.06 0.0430 *
matingnumber4 0.3809 0.1213 68.0000 3.14 0.0025 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) mtngn1 mtngn2 mtngn3
matingnmbr1 0.000
matingnmbr2 0.000 -0.250
matingnmbr3 0.000 -0.250 -0.250
matingnmbr4 0.000 -0.250 -0.250 -0.250
anova(steiger.lmer1, type=3, ddf="Kenward-Roger")
Type III Analysis of Variance Table with Kenward-Roger's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
matingnumber 8.36 2.09 4 68 6.32 0.00022 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
emmeans(steiger.lmer1, ~matingnumber)
matingnumber emmean SE df lower.CL upper.CL
first 1.47 0.138 84.5 1.19 1.74
second 1.83 0.138 84.5 1.55 2.10
third 2.01 0.138 84.5 1.74 2.28
fourth 2.14 0.138 84.5 1.86 2.42
fifth 1.35 0.138 84.5 1.08 1.63
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
Note different CIs compared to OLS model fitting due to K-R adjustment
CI on variance components (remembering to square CIs from lmer which are in SD units)
steiger.ci1 <- confint.merMod(steiger.lmer1, oldNames=FALSE)
Computing profile confidence intervals ...
steiger.vc1 <- (steiger.ci1)^2
print(steiger.vc1)
2.5 % 97.5 %
sd_(Intercept)|individual 0.000000 0.09445
sigma 0.229286 0.43705
(Intercept) 2.643805 3.58182
matingnumber1 0.278325 0.00352
matingnumber2 0.026936 0.09249
matingnumber3 0.000254 0.23443
matingnumber4 0.021535 0.37820
steiger_sum <- summarySE(steiger, measurevar= 'ltime', groupvars= 'matingnumber')
ggplot(steiger_sum, aes(x=matingnumber, y=ltime))+
geom_bar(stat="identity", position="dodge", fill="lightblue")+
geom_errorbar(aes(ymin=ltime-se, ymax=ltime+se), width=0.3, color="darkblue")