Peake and Quinn (1993) investigated the relationship between the number of species of macroinvertebrates, the total abundance of macroinvertebrates, and area of clumps of mussels on a rocky shore in southern Australia. The variables of interest are clump area (dm2), number of species, and number of individuals.

Clump of mussels, with barnacles and gastropods in the clump. Mick Keough

The data set was used in the first edition; get it here Peake, A. J. & Quinn, G. P. (1993). Temporal variation in species-area curves for invertebrates in clumps of an intertidal mussel. Ecography, 16, 269-77.

Preliminaries

First, load the required packages (pwr)

devtools::source_url("https://raw.githubusercontent.com/mjkeough/mjkeough.github.io/refs/heads/main/R/libraries.R")
library(pwr)

Load the data file and transform area, species and indiv

peakquinn <- read_csv("../data/peakquinn.csv")
Rows: 25 Columns: 3── Column specification ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Delimiter: ","
dbl (3): area, indiv, species
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(peakquinn)
peakquinn$larea<-log10(peakquinn$area)
peakquinn$lspecies<-log10(peakquinn$species)
peakquinn$lindiv<-log10(peakquinn$indiv)

The relationship between species and area

scatterplot (species~area, data=peakquinn)

Problems with distributions, so use logged values

scatterplot (lspecies~larea, data=peakquinn)

pq.lm<-lm(lspecies~larea, data=peakquinn)
plot(pq.lm)

Residuals, etc., look much better now

Look at model fit

options(digits=3)   # Tidy up output
augment(pq.lm)
glance(pq.lm, digits=3)
tidy(pq.lm, conf.int = TRUE, digits=3)

And if you want the traditional ANOVA table…

anova(pq.lm)
Analysis of Variance Table

Response: lspecies
          Df Sum Sq Mean Sq F value  Pr(>F)    
larea      1  1.027    1.03     104 5.1e-10 ***
Residuals 23  0.226    0.01                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that all the information is in more compact form in the earlier output

Now look at number of individuals vs clump area

scatterplot (indiv~area, data=peakquinn)

pq2.lm<-lm(indiv~area,data=peakquinn)
plot(pq2.lm)

Scatterplot suggests non-linear relationship and the residual plot shows a pattern. Use log-transformed data

pq3.lm<-lm(lindiv~larea, data=peakquinn)
plot(pq3.lm)

augment(pq3.lm)
glance(pq3.lm)
tidy(pq3.lm, conf.int = TRUE, digits=3)
#And if you want the traditional ANOVA table...
anova(pq3.lm)
Analysis of Variance Table

Response: lindiv
          Df Sum Sq Mean Sq F value Pr(>F)    
larea      1   4.81    4.81     140  3e-11 ***
Residuals 23   0.79    0.03                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Nicer graphic

Fig 6.13

First load script that produces standard graphics appearance (code hidden)

p<-ggplot(peakquinn, aes(x=larea, y=lspecies))+
  geom_point(color=sc)+
  geom_smooth(method="lm", se=FALSE, color=lc)+
  theme_classic(base_size = 10)+
  theme(
    axis.text = element_text(colour = ac),
    axis.line = element_line(color = ac),
    axis.ticks = element_line(color = ac),
        )+
  xlab("Log area")+ylab("Log no. species")
#Add marginal box plots
p1<-ggMarginal(p,size=20, type="boxplot")
`geom_smooth()` using formula = 'y ~ x'`geom_smooth()` using formula = 'y ~ x'
p1

Residual plot

p2<-ggplot(pq.lm, aes(x = pq.lm$fitted.values, y = pq.lm$residuals)) +
  geom_point(color=sc) +
  geom_smooth(se=FALSE, colour=lc)+
  theme_classic(base_size = 10)+
  theme(
    axis.text = element_text(colour = ac),
    axis.line = element_line(color = ac),
    axis.ticks = element_line(color = ac),
        )+labs(x = "Predicted log no. species", y = "Residuals", 
       )
p2

Fig 6.14 - indiv vs area

p3<-ggplot(peakquinn, aes(x=area, y=indiv))+
  geom_point(color = sc)+
  geom_smooth(se = FALSE, color = lc)+
  theme_classic(base_size = 10)+
  theme(
    axis.text = element_text(colour = ac),
    axis.line = element_line(color = ac),
    axis.ticks = element_line(color = ac),
        )+
  xlab("Area")+ylab("No. individuals")
#Add marginal box plots
p4<-ggMarginal(p3,size=20, type="boxplot")
`geom_smooth()` using method = 'loess' and formula = 'y ~ x'`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
p4

Residual plot

p5<-ggplot(pq2.lm, aes(x = pq2.lm$fitted.values, y = pq2.lm$residuals)) +
  geom_point(color=sc) +
  theme_classic(base_size = 10)+
  theme(
    axis.text = element_text(colour = ac),
    axis.line = element_line(color = ac),
    axis.ticks = element_line(color = ac),
        )+labs(x = "Predicted log no. species", y = "Residuals", 
       )
p5

Fig 6.15

p6<-ggplot(peakquinn, aes(x=larea, y=lindiv))+
  geom_point(color=sc)+
  geom_smooth(method="lm", color="black")+
  theme_classic(base_size = 10)+
  theme(
    axis.text = element_text(colour = ac),
    axis.line = element_line(color = ac),
    axis.ticks = element_line(color = ac),
        )+
  xlab("Log area")+ylab("Log no. indiv.")
#Add marginal box plots
p7<-ggMarginal(p6,size=20, type="boxplot")
`geom_smooth()` using formula = 'y ~ x'`geom_smooth()` using formula = 'y ~ x'
p7

Residual plot

p8<-ggplot(pq3.lm, aes(x = pq3.lm$fitted.values, y = pq3.lm$residuals)) +
  geom_point(color=sc) +
  theme_classic(base_size = 10)+
  theme(
    axis.text = element_text(colour = ac),
    axis.line = element_line(color = ac),
    axis.ticks = element_line(color = ac),
        )+labs(x = "Predicted log no. indiv.", y = "Residuals", 
       )
p8

LS0tCnRpdGxlOiAiUUsgRmlncyBCb3ggNi44IgoKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdGhlbWU6IGZsYXRseQotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKUGVha2UgYW5kIFF1aW5uICgxOTkzKSBpbnZlc3RpZ2F0ZWQgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSBudW1iZXIgb2Ygc3BlY2llcyBvZiBtYWNyb2ludmVydGVicmF0ZXMsIHRoZSB0b3RhbCBhYnVuZGFuY2Ugb2YgbWFjcm9pbnZlcnRlYnJhdGVzLCBhbmQgYXJlYSBvZiBjbHVtcHMgb2YgbXVzc2VscyBvbiBhIHJvY2t5IHNob3JlIGluIHNvdXRoZXJuIEF1c3RyYWxpYS4gVGhlIHZhcmlhYmxlcyBvZiBpbnRlcmVzdCBhcmUgY2x1bXAgYXJlYSAoZG1eMl4pLCBudW1iZXIgb2Ygc3BlY2llcywgYW5kIG51bWJlciBvZiBpbmRpdmlkdWFscy4KCiFbXSguLi9tZWRpYS9tdXNzZWxzLmpwZyl7d2lkdGg9IjgwMCJ9CgpDbHVtcCBvZiBtdXNzZWxzLCB3aXRoIGJhcm5hY2xlcyBhbmQgZ2FzdHJvcG9kcyBpbiB0aGUgY2x1bXAuIE1pY2sgS2VvdWdoIFshW10oaW1hZ2VzL2J5LTAzLnBuZyl7d2lkdGg9IjU3In1dKCMwKQoKVGhlIGRhdGEgc2V0IHdhcyB1c2VkIGluIHRoZSBmaXJzdCBlZGl0aW9uOyBnZXQgaXQgW2hlcmVdKGRhdGEvcGVha3F1aW5uLmNzdikgUGVha2UsIEEuIEouICYgUXVpbm4sIEcuIFAuICgxOTkzKS4gVGVtcG9yYWwgdmFyaWF0aW9uIGluIHNwZWNpZXMtYXJlYSBjdXJ2ZXMgZm9yIGludmVydGVicmF0ZXMgaW4gY2x1bXBzIG9mIGFuIGludGVydGlkYWwgbXVzc2VsLiAqRWNvZ3JhcGh5KiwgMTYsIDI2OS03Ny4KCiMjIyBQcmVsaW1pbmFyaWVzCgpGaXJzdCwgbG9hZCB0aGUgcmVxdWlyZWQgcGFja2FnZXMgKHB3cikKCmBgYHtyIHJlc3VsdHM9J2hpZGUnfQpkZXZ0b29sczo6c291cmNlX3VybCgiaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL21qa2VvdWdoL21qa2VvdWdoLmdpdGh1Yi5pby9yZWZzL2hlYWRzL21haW4vUi9saWJyYXJpZXMuUiIpCmxpYnJhcnkocHdyKQpgYGAKCkxvYWQgdGhlIGRhdGEgZmlsZSBhbmQgdHJhbnNmb3JtIGFyZWEsIHNwZWNpZXMgYW5kIGluZGl2CgpgYGB7cn0KcGVha3F1aW5uIDwtIHJlYWRfY3N2KCIuLi9kYXRhL3BlYWtxdWlubi5jc3YiKQpoZWFkKHBlYWtxdWlubikKcGVha3F1aW5uJGxhcmVhPC1sb2cxMChwZWFrcXVpbm4kYXJlYSkKcGVha3F1aW5uJGxzcGVjaWVzPC1sb2cxMChwZWFrcXVpbm4kc3BlY2llcykKcGVha3F1aW5uJGxpbmRpdjwtbG9nMTAocGVha3F1aW5uJGluZGl2KQpgYGAKCiMjIyBUaGUgcmVsYXRpb25zaGlwIGJldHdlZW4gc3BlY2llcyBhbmQgYXJlYQoKYGBge3J9CnNjYXR0ZXJwbG90IChzcGVjaWVzfmFyZWEsIGRhdGE9cGVha3F1aW5uKQpgYGAKClByb2JsZW1zIHdpdGggZGlzdHJpYnV0aW9ucywgc28gdXNlIGxvZ2dlZCB2YWx1ZXMKCmBgYHtyfQpzY2F0dGVycGxvdCAobHNwZWNpZXN+bGFyZWEsIGRhdGE9cGVha3F1aW5uKQpwcS5sbTwtbG0obHNwZWNpZXN+bGFyZWEsIGRhdGE9cGVha3F1aW5uKQpwbG90KHBxLmxtKQpgYGAKUmVzaWR1YWxzLCBldGMuLCBsb29rIG11Y2ggYmV0dGVyIG5vdwoKTG9vayBhdCBtb2RlbCBmaXQKYGBge3J9CmF1Z21lbnQocHEubG0pCmdsYW5jZShwcS5sbSwgZGlnaXRzPTMpCnRpZHkocHEubG0sIGNvbmYuaW50ID0gVFJVRSwgZGlnaXRzPTMpCmBgYAoKQW5kIGlmIHlvdSB3YW50IHRoZSB0cmFkaXRpb25hbCBBTk9WQSB0YWJsZS4uLgoKYGBge3J9CmFub3ZhKHBxLmxtKQpgYGAKCk5vdGUgdGhhdCBhbGwgdGhlIGluZm9ybWF0aW9uIGlzIGluIG1vcmUgY29tcGFjdCBmb3JtIGluIHRoZSBlYXJsaWVyIG91dHB1dAoKCiMjIyBOb3cgbG9vayBhdCBudW1iZXIgb2YgaW5kaXZpZHVhbHMgdnMgY2x1bXAgYXJlYQoKYGBge3J9CnNjYXR0ZXJwbG90IChpbmRpdn5hcmVhLCBkYXRhPXBlYWtxdWlubikKcHEyLmxtPC1sbShpbmRpdn5hcmVhLGRhdGE9cGVha3F1aW5uKQpwbG90KHBxMi5sbSkKYGBgCgpTY2F0dGVycGxvdCBzdWdnZXN0cyBub24tbGluZWFyIHJlbGF0aW9uc2hpcCBhbmQgdGhlIHJlc2lkdWFsIHBsb3Qgc2hvd3MgYSBwYXR0ZXJuLiBVc2UgbG9nLXRyYW5zZm9ybWVkIGRhdGEKCmBgYHtyfQpwcTMubG08LWxtKGxpbmRpdn5sYXJlYSwgZGF0YT1wZWFrcXVpbm4pCnBsb3QocHEzLmxtKQphdWdtZW50KHBxMy5sbSkKZ2xhbmNlKHBxMy5sbSkKdGlkeShwcTMubG0sIGNvbmYuaW50ID0gVFJVRSwgZGlnaXRzPTMpCiNBbmQgaWYgeW91IHdhbnQgdGhlIHRyYWRpdGlvbmFsIEFOT1ZBIHRhYmxlLi4uCmFub3ZhKHBxMy5sbSkKCmBgYAoKIyMgTmljZXIgZ3JhcGhpYwoKIyMjIEZpZyA2LjEzCgpGaXJzdCBsb2FkIHNjcmlwdCB0aGF0IHByb2R1Y2VzIHN0YW5kYXJkIGdyYXBoaWNzIGFwcGVhcmFuY2UgKGNvZGUgaGlkZGVuKQoKYGBge3IgaW5jbHVkZT1GQUxTRSwgcmVzdWx0cz0naGlkZSd9CnNvdXJjZSgiLi4vUi9hcHBlYXJhbmNlLlIiKSAjVGhpcyBpcyB0aGUgY29tbW9uIGxpYnJhcnkgCmBgYAoKYGBge3J9CnA8LWdncGxvdChwZWFrcXVpbm4sIGFlcyh4PWxhcmVhLCB5PWxzcGVjaWVzKSkrCiAgZ2VvbV9wb2ludChjb2xvcj1zYykrCiAgZ2VvbV9zbW9vdGgobWV0aG9kPSJsbSIsIHNlPUZBTFNFLCBjb2xvcj1sYykrCiAgdGhlbWVfY2xhc3NpYyhiYXNlX3NpemUgPSAxMCkrCiAgdGhlbWUoCiAgICBheGlzLnRleHQgPSBlbGVtZW50X3RleHQoY29sb3VyID0gYWMpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG9yID0gYWMpLAogICAgYXhpcy50aWNrcyA9IGVsZW1lbnRfbGluZShjb2xvciA9IGFjKSwKICAgICAgICApKwogIHhsYWIoIkxvZyBhcmVhIikreWxhYigiTG9nIG5vLiBzcGVjaWVzIikKI0FkZCBtYXJnaW5hbCBib3ggcGxvdHMKcDE8LWdnTWFyZ2luYWwocCxzaXplPTIwLCB0eXBlPSJib3hwbG90IikKcDEKYGBgCgpSZXNpZHVhbCBwbG90CgpgYGB7cn0KcDI8LWdncGxvdChwcS5sbSwgYWVzKHggPSBwcS5sbSRmaXR0ZWQudmFsdWVzLCB5ID0gcHEubG0kcmVzaWR1YWxzKSkgKwogIGdlb21fcG9pbnQoY29sb3I9c2MpICsKICBnZW9tX3Ntb290aChzZT1GQUxTRSwgY29sb3VyPWxjKSsKICB0aGVtZV9jbGFzc2ljKGJhc2Vfc2l6ZSA9IDEwKSsKICB0aGVtZSgKICAgIGF4aXMudGV4dCA9IGVsZW1lbnRfdGV4dChjb2xvdXIgPSBhYyksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoY29sb3IgPSBhYyksCiAgICBheGlzLnRpY2tzID0gZWxlbWVudF9saW5lKGNvbG9yID0gYWMpLAogICAgICAgICkrbGFicyh4ID0gIlByZWRpY3RlZCBsb2cgbm8uIHNwZWNpZXMiLCB5ID0gIlJlc2lkdWFscyIsIAogICAgICAgKQpwMgpgYGAKCiMjIyMgRmlnIDYuMTQgLSBpbmRpdiB2cyBhcmVhCgpgYGB7cn0KcDM8LWdncGxvdChwZWFrcXVpbm4sIGFlcyh4PWFyZWEsIHk9aW5kaXYpKSsKICBnZW9tX3BvaW50KGNvbG9yID0gc2MpKwogIGdlb21fc21vb3RoKHNlID0gRkFMU0UsIGNvbG9yID0gbGMpKwogIHRoZW1lX2NsYXNzaWMoYmFzZV9zaXplID0gMTApKwogIHRoZW1lKAogICAgYXhpcy50ZXh0ID0gZWxlbWVudF90ZXh0KGNvbG91ciA9IGFjKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvciA9IGFjKSwKICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2xpbmUoY29sb3IgPSBhYyksCiAgICAgICAgKSsKICB4bGFiKCJBcmVhIikreWxhYigiTm8uIGluZGl2aWR1YWxzIikKI0FkZCBtYXJnaW5hbCBib3ggcGxvdHMKcDQ8LWdnTWFyZ2luYWwocDMsc2l6ZT0yMCwgdHlwZT0iYm94cGxvdCIpCnA0CmBgYAoKUmVzaWR1YWwgcGxvdAoKYGBge3J9CnA1PC1nZ3Bsb3QocHEyLmxtLCBhZXMoeCA9IHBxMi5sbSRmaXR0ZWQudmFsdWVzLCB5ID0gcHEyLmxtJHJlc2lkdWFscykpICsKICBnZW9tX3BvaW50KGNvbG9yPXNjKSArCiAgdGhlbWVfY2xhc3NpYyhiYXNlX3NpemUgPSAxMCkrCiAgdGhlbWUoCiAgICBheGlzLnRleHQgPSBlbGVtZW50X3RleHQoY29sb3VyID0gYWMpLAogICAgYXhpcy5saW5lID0gZWxlbWVudF9saW5lKGNvbG9yID0gYWMpLAogICAgYXhpcy50aWNrcyA9IGVsZW1lbnRfbGluZShjb2xvciA9IGFjKSwKICAgICAgICApK2xhYnMoeCA9ICJQcmVkaWN0ZWQgbG9nIG5vLiBzcGVjaWVzIiwgeSA9ICJSZXNpZHVhbHMiLCAKICAgICAgICkKcDUKYGBgCgojIyMjIEZpZyA2LjE1CgpgYGB7cn0KcDY8LWdncGxvdChwZWFrcXVpbm4sIGFlcyh4PWxhcmVhLCB5PWxpbmRpdikpKwogIGdlb21fcG9pbnQoY29sb3I9c2MpKwogIGdlb21fc21vb3RoKG1ldGhvZD0ibG0iLCBjb2xvcj0iYmxhY2siKSsKICB0aGVtZV9jbGFzc2ljKGJhc2Vfc2l6ZSA9IDEwKSsKICB0aGVtZSgKICAgIGF4aXMudGV4dCA9IGVsZW1lbnRfdGV4dChjb2xvdXIgPSBhYyksCiAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoY29sb3IgPSBhYyksCiAgICBheGlzLnRpY2tzID0gZWxlbWVudF9saW5lKGNvbG9yID0gYWMpLAogICAgICAgICkrCiAgeGxhYigiTG9nIGFyZWEiKSt5bGFiKCJMb2cgbm8uIGluZGl2LiIpCiNBZGQgbWFyZ2luYWwgYm94IHBsb3RzCnA3PC1nZ01hcmdpbmFsKHA2LHNpemU9MjAsIHR5cGU9ImJveHBsb3QiKQpwNwpgYGAKClJlc2lkdWFsIHBsb3QKCmBgYHtyfQpwODwtZ2dwbG90KHBxMy5sbSwgYWVzKHggPSBwcTMubG0kZml0dGVkLnZhbHVlcywgeSA9IHBxMy5sbSRyZXNpZHVhbHMpKSArCiAgZ2VvbV9wb2ludChjb2xvcj1zYykgKwogIHRoZW1lX2NsYXNzaWMoYmFzZV9zaXplID0gMTApKwogIHRoZW1lKAogICAgYXhpcy50ZXh0ID0gZWxlbWVudF90ZXh0KGNvbG91ciA9IGFjKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvciA9IGFjKSwKICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2xpbmUoY29sb3IgPSBhYyksCiAgICAgICAgKStsYWJzKHggPSAiUHJlZGljdGVkIGxvZyBuby4gaW5kaXYuIiwgeSA9ICJSZXNpZHVhbHMiLCAKICAgICAgICkKcDgKYGBgCg==