Parkinson et al. (2020) set tested experimentally the effect of artificial light at night (ALAN) and fish presence on abundances of terrestrial and aquatic invertebrates in the littoral zone of a small lake. They established 20 mesocosms (1 m2 plastic mesh walls and bottom submerged with part of the walls above the water surface) with ten provided with ALAN (solar lights in each corner) and ten controls. Half the mesocosms in each group had fish added, but there were no effects of fish on any variables, so Parkinson et al. ignored fish in the subsequent analyses. After about six weeks, a single pan trap was placed in each mesocosm overnight, and invertebrates were identified to family and counted. We will use these data to do an ordination of mesocosms based on invertebrate family abundances and then fit models to examine differences between the two treatment groups (ALAN vs. no-ALAN).
The paper is here
Parkinson, E., Lawson, J. & Tiegs, S. D. (2020). Artificial light at night at the terrestrial-aquatic interface: Effects on predators and fluxes of insect prey. PLoS One, 15, e0240138.
# Load standard set of graphics packages and other libraries
devtools::source_url("https://raw.githubusercontent.com/mjkeough/mjkeough.github.io/refs/heads/main/R/libraries.R") #This loads a set of packages used often
devtools::source_url("https://raw.githubusercontent.com/mjkeough/mjkeough.github.io/refs/heads/main/R/appearance.R") #Graphics tweaks
Load packages specific to this example: vegan,mvabund
library(vegan)
library(mvabund)
Read in data file (park2020.csv) and remove labels
park <- read.csv("../data/park2020.csv")
park1 <- park[,-(1:3)]
park1.bc <- vegdist(park1,'bray')
park1.mds <- metaMDS(park1.bc,k=2,autotransform=FALSE)
Run 0 stress 0.0314781086
Run 1 stress 0.03147916732
... Procrustes: rmse 0.0009162213019 max resid 0.002573579273
... Similar to previous best
Run 2 stress 0.03147824936
... Procrustes: rmse 0.0006511648466 max resid 0.001823701035
... Similar to previous best
Run 3 stress 0.03147826474
... Procrustes: rmse 8.269200682e-05 max resid 0.0002333509795
... Similar to previous best
Run 4 stress 0.03147804377
... New best solution
... Procrustes: rmse 0.0005376042751 max resid 0.001505825555
... Similar to previous best
Run 5 stress 0.04150746776
Run 6 stress 0.04150779055
Run 7 stress 0.04150747985
Run 8 stress 0.04025041497
Run 9 stress 0.04150747706
Run 10 stress 0.04150755613
Run 11 stress 0.03148315131
... Procrustes: rmse 0.0008968505207 max resid 0.002517014572
... Similar to previous best
Run 12 stress 0.0402503331
Run 13 stress 0.03148097289
... Procrustes: rmse 0.0007796402469 max resid 0.002183605502
... Similar to previous best
Run 14 stress 0.03154474849
... Procrustes: rmse 0.004097556535 max resid 0.01195077784
Run 15 stress 0.03368096676
Run 16 stress 0.03244801114
Run 17 stress 0.0314781642
... Procrustes: rmse 6.604590811e-05 max resid 0.0001860086218
... Similar to previous best
Run 18 stress 0.03197404232
... Procrustes: rmse 0.0120005642 max resid 0.03267575851
Run 19 stress 0.04150829536
Run 20 stress 0.03570233717
*** Best solution repeated 4 times
stressplot(park1.mds, main="Shepard plot")
park1.mds
Call:
metaMDS(comm = park1.bc, k = 2, autotransform = FALSE)
global Multidimensional Scaling using monoMDS
Data: park1.bc
Distance: bray
Dimensions: 2
Stress: 0.03147804377
Stress type 1, weak ties
Best solution was repeated 4 times in 20 tries
The best solution was from try 4 (random start)
Scaling: centring, PC rotation, halfchange scaling
Species: scores missing
ordiplot(park1.mds$points,display="sites",type="n")
points(park1.mds$points,pch=as.numeric(park$symb))
With standardisation (wisconsin)
park1s <- wisconsin(park1)
park1s.bc <- vegdist(park1s,'bray')
park1s.mds <- metaMDS(park1s.bc,k=3,autotransform=FALSE,try=40,trymax=80,maxit=200)
Run 0 stress 0.1448504913
Run 1 stress 0.1459783974
Run 2 stress 0.1537681638
Run 3 stress 0.1766276124
Run 4 stress 0.1548081397
Run 5 stress 0.1448504997
... Procrustes: rmse 0.0007745907072 max resid 0.001822508025
... Similar to previous best
Run 6 stress 0.1537680528
Run 7 stress 0.1552734079
Run 8 stress 0.1550377245
Run 9 stress 0.145978259
Run 10 stress 0.1448502487
... New best solution
... Procrustes: rmse 0.0004035091964 max resid 0.0009831655366
... Similar to previous best
Run 11 stress 0.1547491124
Run 12 stress 0.1459782229
Run 13 stress 0.1459785746
Run 14 stress 0.1448503331
... Procrustes: rmse 0.0002484488014 max resid 0.0006681234278
... Similar to previous best
Run 15 stress 0.1459781267
Run 16 stress 0.145978326
Run 17 stress 0.1551463838
Run 18 stress 0.1553990628
Run 19 stress 0.1459783702
Run 20 stress 0.14485031
... Procrustes: rmse 0.0002054943791 max resid 0.0005974124936
... Similar to previous best
Run 21 stress 0.1459782639
Run 22 stress 0.1448503685
... Procrustes: rmse 0.0002864081346 max resid 0.0007413505381
... Similar to previous best
Run 23 stress 0.1459784582
Run 24 stress 0.1547491536
Run 25 stress 0.145978345
Run 26 stress 0.1537684861
Run 27 stress 0.145978299
Run 28 stress 0.1459787331
Run 29 stress 0.1459784516
Run 30 stress 0.1459783164
Run 31 stress 0.1459784266
Run 32 stress 0.1552819078
Run 33 stress 0.1548081105
Run 34 stress 0.1459783393
Run 35 stress 0.1459785045
Run 36 stress 0.1658671891
Run 37 stress 0.1459784109
Run 38 stress 0.1763639878
Run 39 stress 0.1547493436
Run 40 stress 0.145978561
*** Best solution repeated 4 times
stressplot(park1s.mds, main="Shepard plot")
park1s.mds
Call:
metaMDS(comm = park1s.bc, k = 3, try = 40, trymax = 80, autotransform = FALSE, maxit = 200)
global Multidimensional Scaling using monoMDS
Data: park1s.bc
Distance: bray
Dimensions: 3
Stress: 0.1448502487
Stress type 1, weak ties
Best solution was repeated 4 times in 40 tries
The best solution was from try 10 (random start)
Scaling: centring, PC rotation, halfchange scaling
Species: scores missing
ordiplot(park1s.mds$points,type="n",display="sites",choices=c(1,3))
points(park1s.mds$points,pch=as.numeric(park$symb))
note that ordihull might be useful to draw boundaries around each group??
Check first with file of abundances, then proportional abundances
park1.disp <- betadisper(park1.bc,park$treat)
anova(park1.disp)
Analysis of Variance Table
Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)
Groups 1 0.01697682 0.016976819 0.45595 0.50811
Residuals 18 0.67021403 0.037234113
park1s.disp <- betadisper(park1s.bc,park$treat)
anova(park1s.disp)
Analysis of Variance Table
Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)
Groups 1 0.022832467 0.0228324670 3.51759 0.077037 .
Residuals 18 0.116837023 0.0064909457
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
park1.ano <- anosim(park1.bc, park$treat,permutations=999)
summary(park1.ano)
Call:
anosim(x = park1.bc, grouping = park$treat, permutations = 999)
Dissimilarity: bray
ANOSIM statistic R: 0.678
Significance: 0.001
Permutation: free
Number of permutations: 999
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.112 0.154 0.223 0.344
Dissimilarity ranks between and within classes:
0% 25% 50% 75% 100% N
Between 8 95.75 135.5 165.25 190 100
ALAN 1 15.00 36.0 113.00 158 45
no ALAN 10 45.00 64.0 81.00 160 45
park1s.ano <- anosim(park1s.bc, park$treat,permutations=999)
summary(park1s.ano)
Call:
anosim(x = park1s.bc, grouping = park$treat, permutations = 999)
Dissimilarity: bray
ANOSIM statistic R: 0.2988889
Significance: 0.001
Permutation: free
Number of permutations: 999
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0891 0.1150 0.1364 0.1568
Dissimilarity ranks between and within classes:
0% 25% 50% 75% 100% N
Between 5 72.5 113 151.5 190 100
ALAN 1 25.0 51 77.0 177 45
no ALAN 8 59.0 111 143.5 187 45
# do permanova on abundances
park1.ado <- adonis2(park1.bc~treat,data=park,permutations=999)
print(park1.ado)
Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999
adonis2(formula = park1.bc ~ treat, data = park, permutations = 999)
Df SumOfSqs R2 F Pr(>F)
Model 1 1.6916059 0.46132073 15.41506 0.001 ***
Residual 18 1.9752701 0.53867927
Total 19 3.6668759 1.00000000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# do permanova on prop abundances
park1s.ado <- adonis2(park1s.bc~treat,data=park,permutations=999)
print(park1s.ado)
Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999
adonis2(formula = park1s.bc ~ treat, data = park, permutations = 999)
Df SumOfSqs R2 F Pr(>F)
Model 1 0.7250769 0.12405974 2.54935 0.001 ***
Residual 18 5.1195016 0.87594026
Total 19 5.8445785 1.00000000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Run using negative binomial for raw abundances and double standardized abundances from earlier
park1mv <- mvabund(park1)
park1mv.mv <- manyglm(park1mv~park$treat,family="negative.binomial")
plot(park1mv.mv)
anova(park1mv.mv)
Time elapsed: 0 hr 0 min 3 sec
Analysis of Deviance Table
Model: park1mv ~ park$treat
Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 19
park$treat 18 1 106.6619 0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming uncorrelated response (for faster computation)
P-value calculated using 999 iterations via PIT-trap resampling.
park1smv <- mvabund(park1s)
park1smv.mv <- manyglm(park1smv~park$treat,family="negative.binomial")
Warning: Non-integer data are fitted to the negative.binomial model.
plot(park1smv.mv)
anova(park1smv.mv)
Time elapsed: 0 hr 0 min 1 sec
Analysis of Deviance Table
Model: park1smv ~ park$treat
Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 19
park$treat 18 1 10.31607 0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming uncorrelated response (for faster computation)
P-value calculated using 999 iterations via PIT-trap resampling.
Again, abundances then proportional abundances
park1.sim <- simper(park1, park$treat, permutations=1000)
summary(park1.sim)
Contrast: ALAN_no ALAN
average sd ratio ava avb cumsum
caen 0.53073710 0.20750121 2.55775440 134.20000000 16.40000000 0.75123
chiron 0.08169960 0.04077522 2.00365870 22.50000000 5.00000000 0.86687
dolich 0.01473630 0.01465528 1.00552580 2.20000000 3.00000000 0.88773
cerat 0.00787050 0.01278722 0.61550080 1.00000000 0.20000000 0.89887
aphid 0.00753970 0.00928324 0.81218300 1.20000000 0.30000000 0.90954
ephyd 0.00664750 0.00851621 0.78057120 1.10000000 0.40000000 0.91895
baet 0.00622850 0.00539966 1.15350300 1.20000000 0.80000000 0.92777
chryso 0.00515730 0.00625262 0.82481640 1.00000000 0.40000000 0.93507
culicid 0.00447040 0.00600293 0.74471020 0.90000000 0.20000000 0.94140
tetrag 0.00440360 0.00853100 0.51618280 0.50000000 0.10000000 0.94763
hydro 0.00413960 0.00579859 0.71388990 0.50000000 0.30000000 0.95349
tipulid 0.00296020 0.00473538 0.62512810 0.10000000 0.40000000 0.95768
muscid 0.00275280 0.00628151 0.43823190 0.60000000 0.00000000 0.96158
empid 0.00192420 0.00480348 0.40058360 0.20000000 0.00000000 0.96430
formic 0.00187970 0.00359958 0.52220550 0.00000000 0.30000000 0.96696
polycen 0.00184710 0.00356411 0.51824890 0.00000000 0.30000000 0.96958
sciomyz 0.00178880 0.00456287 0.39203540 0.20000000 0.00000000 0.97211
helod 0.00173320 0.00276821 0.62610920 0.30000000 0.10000000 0.97456
taban 0.00149740 0.00457476 0.32731400 0.10000000 0.00000000 0.97668
cosmop 0.00149740 0.00457476 0.32731400 0.10000000 0.00000000 0.97880
coen 0.00144050 0.00288607 0.49911020 0.20000000 0.10000000 0.98084
delph 0.00140790 0.00324262 0.43419600 0.30000000 0.00000000 0.98283
notonec 0.00132110 0.00248828 0.53093330 0.20000000 0.10000000 0.98470
leptoc 0.00113500 0.00315211 0.36007570 0.10000000 0.10000000 0.98631
noctuid 0.00113060 0.00266564 0.42412650 0.00000000 0.20000000 0.98791
hydroph 0.00096370 0.00282052 0.34167350 0.10000000 0.10000000 0.98927
hydropt 0.00094090 0.00270596 0.34769980 0.10000000 0.10000000 0.99060
aran 0.00094090 0.00270596 0.34769980 0.10000000 0.10000000 0.99194
corix 0.00088120 0.00181616 0.48521560 0.20000000 0.00000000 0.99318
limneph 0.00082200 0.00167388 0.49105700 0.20000000 0.00000000 0.99435
phryg 0.00071650 0.00268957 0.26641010 0.00000000 0.10000000 0.99536
cicad 0.00071650 0.00268957 0.26641010 0.00000000 0.10000000 0.99637
agrom 0.00068070 0.00250987 0.27120330 0.00000000 0.10000000 0.99734
mymar 0.00068070 0.00250987 0.27120330 0.00000000 0.10000000 0.99830
halip 0.00062130 0.00222367 0.27938610 0.00000000 0.10000000 0.99918
acrid 0.00057870 0.00174866 0.33094120 0.10000000 0.00000000 1.00000
p
caen 0.000999 ***
chiron 0.003996 **
dolich 1.000000
cerat 0.035964 *
aphid 0.092907 .
ephyd 0.995005
baet 1.000000
chryso 1.000000
culicid 0.854146
tetrag 0.157842
hydro 0.994006
tipulid 1.000000
muscid 0.000999 ***
empid 0.000999 ***
formic 1.000000
polycen 1.000000
sciomyz 0.000999 ***
helod 0.990010
taban 0.000999 ***
cosmop 0.000999 ***
coen 1.000000
delph 0.000999 ***
notonec 0.997003
leptoc 1.000000
noctuid 1.000000
hydroph 1.000000
hydropt 1.000000
aran 1.000000
corix 0.000999 ***
limneph 0.000999 ***
phryg 1.000000
cicad 1.000000
agrom 1.000000
mymar 1.000000
halip 1.000000
acrid 0.000999 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Permutation: free
Number of permutations: 1000
park1s.sim <- simper(park1s, park$treat, permutations=10000)
summary(park1s.sim)
Contrast: ALAN_no ALAN
average sd ratio ava avb cumsum p
dolich 0.05567753 0.05036353 1.10551280 0.06114571 0.14459229 0.06928 0.0443956
tipulid 0.05434679 0.06560897 0.82834390 0.03054523 0.09694927 0.13691 0.1920808
formic 0.04838040 0.07859915 0.61553340 0.00000000 0.09676081 0.19712 0.0001000
caen 0.03615812 0.01885013 1.91818890 0.08925553 0.01838462 0.24211 0.0001000
baet 0.03615482 0.02235550 1.61726740 0.07487352 0.06517397 0.28710 0.2178782
helod 0.03376458 0.04640781 0.72756250 0.05221490 0.02575724 0.32912 0.3311669
polycen 0.03298760 0.05306306 0.62166790 0.00000000 0.06597519 0.37017 0.0001000
cerat 0.03128276 0.03456680 0.90499440 0.05570346 0.02631800 0.40910 0.3570643
hydroph 0.03085007 0.07579031 0.40704510 0.01318681 0.05115069 0.44749 0.4725527
coen 0.02716705 0.04624199 0.58749760 0.03912138 0.02293446 0.48129 0.4756524
ephyd 0.02608681 0.03148699 0.82849480 0.04707879 0.01636238 0.51375 0.3050695
aphid 0.02539183 0.02525769 1.00531100 0.05701335 0.01515914 0.54535 0.0308969
chiron 0.02315855 0.01568403 1.47656860 0.06636337 0.02706614 0.57417 0.0082992
tetrag 0.02268828 0.02822100 0.80395020 0.04104293 0.01191421 0.60240 0.1962804
chryso 0.02090415 0.01881287 1.11116230 0.03550069 0.02411942 0.62841 0.3288671
empid 0.02002624 0.04668232 0.42898980 0.04005248 0.00000000 0.65334 0.0001000
noctuid 0.01970658 0.04172432 0.47230440 0.00000000 0.03941316 0.67786 0.0001000
notonec 0.01917122 0.03335689 0.57473050 0.02914493 0.01387370 0.70171 0.4716528
leptoc 0.01892133 0.04045124 0.46775650 0.01751780 0.02382842 0.72526 0.4765523
hydro 0.01827123 0.02060112 0.88690470 0.02470708 0.02474372 0.74800 0.7012299
hydropt 0.01755325 0.03856413 0.45517030 0.01318681 0.02455704 0.76984 0.4646535
aran 0.01755325 0.03856413 0.45517030 0.01318681 0.02455704 0.79168 0.4646535
halip 0.01674495 0.05048793 0.33166250 0.00000000 0.03348990 0.81252 0.0001000
culicid 0.01439120 0.01842130 0.78122570 0.02561191 0.00792619 0.83043 0.1963804
sciomyz 0.01412053 0.02846080 0.49613970 0.02824107 0.00000000 0.84800 0.0001000
phryg 0.01328101 0.04004377 0.33166250 0.00000000 0.02656203 0.86453 0.0001000
cicad 0.01328101 0.04004377 0.33166250 0.00000000 0.02656203 0.88105 0.0001000
corix 0.01316086 0.02769928 0.47513370 0.02632172 0.00000000 0.89743 0.0001000
limneph 0.01259072 0.02623983 0.47983220 0.02518144 0.00000000 0.91310 0.0001000
agrom 0.01146723 0.03457499 0.33166250 0.00000000 0.02293446 0.92737 0.0001000
mymar 0.01146723 0.03457499 0.33166250 0.00000000 0.02293446 0.94164 0.0001000
muscid 0.01124399 0.02505917 0.44869770 0.02248799 0.00000000 0.95563 0.0001000
delph 0.01078405 0.02556459 0.42183530 0.02156810 0.00000000 0.96905 0.0001000
acrid 0.00981884 0.02960492 0.33166250 0.01963769 0.00000000 0.98127 0.0001000
taban 0.00752713 0.02269514 0.33166250 0.01505425 0.00000000 0.99063 0.0001000
cosmop 0.00752713 0.02269514 0.33166250 0.01505425 0.00000000 1.00000 0.0001000
dolich *
tipulid
formic ***
caen ***
baet
helod
polycen ***
cerat
hydroph
coen
ephyd
aphid *
chiron **
tetrag
chryso
empid ***
noctuid ***
notonec
leptoc
hydro
hydropt
aran
halip ***
culicid
sciomyz ***
phryg ***
cicad ***
corix ***
limneph ***
agrom ***
mymar ***
muscid ***
delph ***
acrid ***
taban ***
cosmop ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Permutation: free
Number of permutations: 10000
Note: graphs may not run at the moment because of a problem in vegan 2.6.2 relating to the scores function when dealing with mds objects. Expecting a fix soon (as of 7 June 2022). Problem did not exist prior to this version of vegan
br=c("ALAN","no ALAN")
la=c("ALAN", "No ALAN")
a<-as.data.frame(scores(park1.mds))
a<-cbind(park[c(1:2)],a) #Add mesocosms & treatments from original data file
p1<-ggplot(data=a, aes(x=NMDS1, y=NMDS2, shape=treat) )+
geom_point()+
labs(y="MDS2", x="MDS1", title="Raw")+
scale_shape_manual(values=sym2,
name="Treat",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
as<-as.data.frame(scores(park1s.mds))
as<-cbind(park[c(1:2)],as) #Add mesocosms & treatments from original data file
p2<-ggplot(data=as, aes(x=NMDS1, y=NMDS2, shape=treat) )+
geom_point()+
labs(y=NULL, x="MDS1", title="Standardized")+
scale_shape_manual(values=sym2,
name="Treat",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
p4<-p1+p2+plot_layout(guides='collect')&theme(axis.text=element_blank())
p4
# with ellipses
p1a<-p1+stat_ellipse(geom="polygon", alpha= 0.2)
p2a<-p2+stat_ellipse(geom="polygon", alpha= 0.2)
p4a<-p1a+p2a+plot_layout(guides='collect')
p4a
Color versions
p1<-ggplot(data=a, aes(x=NMDS1, y=NMDS2, color=treat, fill=treat) )+
geom_point()+
labs(y="MDS2", x="MDS1", title="Raw")+
scale_color_uchicago(name="Treat",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
scale_fill_uchicago(name="Treat",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL))+
theme_qk()
p2<-ggplot(data=as, aes(x=NMDS1, y=NMDS2, color=treat, fill=treat) )+
geom_point()+
labs(y=NULL, x="MDS1", title="Standardized")+
scale_color_uchicago(
name="Treat",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
scale_fill_uchicago(name="Treat",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL))+
theme_qk()
p4<-p1+p2+plot_layout(guides='collect')&theme(axis.text=element_blank())
p4
# with ellipses
p1a<-p1+stat_ellipse(geom="polygon", alpha= 0.2)
p2a<-p2+stat_ellipse(geom="polygon", alpha= 0.2)
p4a<-p1a+p2a+plot_layout(guides='collect')&theme(axis.text=element_blank())
p4a