This box continues with the Low et al. example starting in Box 2.2

Preliminaries

Use rstanarm and BayesFactor packages; also needs bayestestR Add bayesplot for control over plot

Load graphics packages (if ggplot version of figures wanted)

Note that iso is reference group so diff between means is -ve

Uninformative priors

low <- read_csv("../data/lowco2.csv")
Rows: 23 Columns: 2── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Delimiter: ","
chr (1): anesth
dbl (1): co2
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
low1 <- stan_glm(co2~anesth,family = gaussian(link = "identity"),data=low)

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000227 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.27 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.031 seconds (Warm-up)
Chain 1:                0.024 seconds (Sampling)
Chain 1:                0.055 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 1.5e-05 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.03 seconds (Warm-up)
Chain 2:                0.023 seconds (Sampling)
Chain 2:                0.053 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 6e-06 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.029 seconds (Warm-up)
Chain 3:                0.026 seconds (Sampling)
Chain 3:                0.055 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 3.3e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.33 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.038 seconds (Warm-up)
Chain 4:                0.023 seconds (Sampling)
Chain 4:                0.061 seconds (Total)
Chain 4: 
posteriors1 <- describe_posterior(low1)
print_md(posteriors1, digits = 2)
Summary of Posterior Distribution
Parameter Median 95% CI pd ROPE % in ROPE Rhat ESS
(Intercept) 70.84 [ 60.75, 81.23] 100% [-1.91, 1.91] 0% 1.000 3385.00
anesthiso -21.01 [-34.87, -6.78] 99.80% [-1.91, 1.91] 0% 1.001 3148.00
# plot posterior distribution for all three parameters (intercept, mean diff, sigma)
plot(low1,plotfun="mcmc_hist")

# get Bayes factor for mean diff
lowx <- as.data.frame(low)
lmBF(co2~anesth, data=lowx,posterior=FALSE)
Bayes factor analysis
--------------
[1] anesth : 8.039109 ±0%

Against denominator:
  Intercept only 
---
Bayes factor type: BFlinearModel, JZS

Informative priors

Run three options, mean difference with high and low precision, and a bigger mean difference with high precision

#for mean difference with high precision
low2 <- stan_glm(co2~anesth,family = gaussian(link = "identity"),prior=normal(-25,5),data=low)

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 1.4e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.031 seconds (Warm-up)
Chain 1:                0.024 seconds (Sampling)
Chain 1:                0.055 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 9e-06 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.029 seconds (Warm-up)
Chain 2:                0.022 seconds (Sampling)
Chain 2:                0.051 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 7e-06 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.031 seconds (Warm-up)
Chain 3:                0.023 seconds (Sampling)
Chain 3:                0.054 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 6e-06 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.032 seconds (Warm-up)
Chain 4:                0.024 seconds (Sampling)
Chain 4:                0.056 seconds (Total)
Chain 4: 
posteriors2 <- describe_posterior(low2)
print_md(posteriors2, digits = 2)
Summary of Posterior Distribution
Parameter Median 95% CI pd ROPE % in ROPE Rhat ESS
(Intercept) 72.26 [ 64.35, 80.42] 100% [-1.91, 1.91] 0% 0.999 3472.00
anesthiso -23.59 [-31.50, -15.58] 100% [-1.91, 1.91] 0% 0.999 3856.00
# informative prior for mean difference with low precision
low3 <- stan_glm(co2~anesth,family = gaussian(link = "identity"),prior=normal(-25,20),data=low)

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 1.3e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.028 seconds (Warm-up)
Chain 1:                0.024 seconds (Sampling)
Chain 1:                0.052 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 7e-06 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.031 seconds (Warm-up)
Chain 2:                0.023 seconds (Sampling)
Chain 2:                0.054 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 7e-06 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.028 seconds (Warm-up)
Chain 3:                0.023 seconds (Sampling)
Chain 3:                0.051 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 1.1e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.032 seconds (Warm-up)
Chain 4:                0.023 seconds (Sampling)
Chain 4:                0.055 seconds (Total)
Chain 4: 
posteriors3 <- describe_posterior(low3)
print_md(posteriors3, digits = 2)
Summary of Posterior Distribution
Parameter Median 95% CI pd ROPE % in ROPE Rhat ESS
(Intercept) 71.12 [ 60.87, 81.10] 100% [-1.91, 1.91] 0% 1.001 3416.00
anesthiso -21.27 [-34.82, -8.57] 99.92% [-1.91, 1.91] 0% 1.001 3480.00
# informative prior for bigger mean difference with high precision
low4 <- stan_glm(co2~anesth,family = gaussian(link = "identity"),prior=normal(-50,5),data=low)

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 1.3e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.035 seconds (Warm-up)
Chain 1:                0.025 seconds (Sampling)
Chain 1:                0.06 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 8e-06 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.038 seconds (Warm-up)
Chain 2:                0.025 seconds (Sampling)
Chain 2:                0.063 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 7e-06 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.057 seconds (Warm-up)
Chain 3:                0.023 seconds (Sampling)
Chain 3:                0.08 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'continuous' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 7e-06 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.032 seconds (Warm-up)
Chain 4:                0.022 seconds (Sampling)
Chain 4:                0.054 seconds (Total)
Chain 4: 
posteriors4 <- describe_posterior(low4)
print_md(posteriors4, digits = 2)
Summary of Posterior Distribution
Parameter Median 95% CI pd ROPE % in ROPE Rhat ESS
(Intercept) 81.61 [ 72.56, 92.05] 100% [-1.91, 1.91] 0% 1.000 2802.00
anesthiso -41.77 [-51.18, -32.72] 100% [-1.91, 1.91] 0% 1.000 2804.00

Generate ggplot-compatible figure for mean difference posterior distribution

posterior<-as.array(low1)
color_scheme_set("gray")
p<-mcmc_hist(posterior, pars = c("anesthiso"))+
  xlab("Mean difference")
p

# ggsave ("QK F2_07.pdf", plot = p, height = ph, width = pw, units='cm')
LS0tCnRpdGxlOiAiUUsgQm94IDIuNSIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdGhlbWU6IGZsYXRseQotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYApUaGlzIGJveCBjb250aW51ZXMgd2l0aCB0aGUgTG93IGV0IGFsLiBleGFtcGxlIHN0YXJ0aW5nIGluIEJveCAyLjIKCiMjIyBQcmVsaW1pbmFyaWVzClVzZSByc3RhbmFybSBhbmQgQmF5ZXNGYWN0b3IgcGFja2FnZXM7IGFsc28gbmVlZHMgYmF5ZXN0ZXN0UgpBZGQgYmF5ZXNwbG90IGZvciBjb250cm9sIG92ZXIgcGxvdApgYGB7ciAgZWNobz1GQUxTRSwgaW5jbHVkZT1GQUxTRSwgcmVzdWx0cz0naGlkZSd9CmxpYnJhcnkocnN0YW5hcm0pCmxpYnJhcnkoQmF5ZXNGYWN0b3IpCmxpYnJhcnkoYmF5ZXN0ZXN0UikKbGlicmFyeShiYXllc3Bsb3QpCgpgYGAKTG9hZCBncmFwaGljcyBwYWNrYWdlcyAoaWYgZ2dwbG90IHZlcnNpb24gb2YgZmlndXJlcyB3YW50ZWQpCmBgYHtyIGVjaG89RkFMU0UsIGluY2x1ZGU9RkFMU0UsIHJlc3VsdHM9J2hpZGUnfQpzb3VyY2UoIi4uL1IvYXBwZWFyYW5jZS5SIikKYGBgCgpOb3RlIHRoYXQgaXNvIGlzIHJlZmVyZW5jZSBncm91cCBzbyBkaWZmIGJldHdlZW4gbWVhbnMgaXMgLXZlCgojIyMgVW5pbmZvcm1hdGl2ZSBwcmlvcnMKYGBge3J9CmxvdyA8LSByZWFkX2NzdigiLi4vZGF0YS9sb3djbzIuY3N2IikKbG93MSA8LSBzdGFuX2dsbShjbzJ+YW5lc3RoLGZhbWlseSA9IGdhdXNzaWFuKGxpbmsgPSAiaWRlbnRpdHkiKSxkYXRhPWxvdykKcG9zdGVyaW9yczEgPC0gZGVzY3JpYmVfcG9zdGVyaW9yKGxvdzEpCnByaW50X21kKHBvc3RlcmlvcnMxLCBkaWdpdHMgPSAyKQojIHBsb3QgcG9zdGVyaW9yIGRpc3RyaWJ1dGlvbiBmb3IgYWxsIHRocmVlIHBhcmFtZXRlcnMgKGludGVyY2VwdCwgbWVhbiBkaWZmLCBzaWdtYSkKcGxvdChsb3cxLHBsb3RmdW49Im1jbWNfaGlzdCIpCiMgZ2V0IEJheWVzIGZhY3RvciBmb3IgbWVhbiBkaWZmCmxvd3ggPC0gYXMuZGF0YS5mcmFtZShsb3cpCmxtQkYoY28yfmFuZXN0aCwgZGF0YT1sb3d4LHBvc3Rlcmlvcj1GQUxTRSkKYGBgCiMjIyBJbmZvcm1hdGl2ZSBwcmlvcnMgClJ1biB0aHJlZSBvcHRpb25zLCBtZWFuIGRpZmZlcmVuY2Ugd2l0aCBoaWdoIGFuZCBsb3cgcHJlY2lzaW9uLCBhbmQgYSBiaWdnZXIgbWVhbiBkaWZmZXJlbmNlIHdpdGggaGlnaCBwcmVjaXNpb24KYGBge3J9CiNmb3IgbWVhbiBkaWZmZXJlbmNlIHdpdGggaGlnaCBwcmVjaXNpb24KbG93MiA8LSBzdGFuX2dsbShjbzJ+YW5lc3RoLGZhbWlseSA9IGdhdXNzaWFuKGxpbmsgPSAiaWRlbnRpdHkiKSxwcmlvcj1ub3JtYWwoLTI1LDUpLGRhdGE9bG93KQpwb3N0ZXJpb3JzMiA8LSBkZXNjcmliZV9wb3N0ZXJpb3IobG93MikKcHJpbnRfbWQocG9zdGVyaW9yczIsIGRpZ2l0cyA9IDIpCiMgaW5mb3JtYXRpdmUgcHJpb3IgZm9yIG1lYW4gZGlmZmVyZW5jZSB3aXRoIGxvdyBwcmVjaXNpb24KbG93MyA8LSBzdGFuX2dsbShjbzJ+YW5lc3RoLGZhbWlseSA9IGdhdXNzaWFuKGxpbmsgPSAiaWRlbnRpdHkiKSxwcmlvcj1ub3JtYWwoLTI1LDIwKSxkYXRhPWxvdykKcG9zdGVyaW9yczMgPC0gZGVzY3JpYmVfcG9zdGVyaW9yKGxvdzMpCnByaW50X21kKHBvc3RlcmlvcnMzLCBkaWdpdHMgPSAyKQojIGluZm9ybWF0aXZlIHByaW9yIGZvciBiaWdnZXIgbWVhbiBkaWZmZXJlbmNlIHdpdGggaGlnaCBwcmVjaXNpb24KbG93NCA8LSBzdGFuX2dsbShjbzJ+YW5lc3RoLGZhbWlseSA9IGdhdXNzaWFuKGxpbmsgPSAiaWRlbnRpdHkiKSxwcmlvcj1ub3JtYWwoLTUwLDUpLGRhdGE9bG93KQpwb3N0ZXJpb3JzNCA8LSBkZXNjcmliZV9wb3N0ZXJpb3IobG93NCkKcHJpbnRfbWQocG9zdGVyaW9yczQsIGRpZ2l0cyA9IDIpCmBgYAojIyMgR2VuZXJhdGUgZ2dwbG90LWNvbXBhdGlibGUgZmlndXJlIGZvciBtZWFuIGRpZmZlcmVuY2UgcG9zdGVyaW9yIGRpc3RyaWJ1dGlvbgpgYGB7cn0KcG9zdGVyaW9yPC1hcy5hcnJheShsb3cxKQpjb2xvcl9zY2hlbWVfc2V0KCJncmF5IikKcDwtbWNtY19oaXN0KHBvc3RlcmlvciwgcGFycyA9IGMoImFuZXN0aGlzbyIpKSsKICB4bGFiKCJNZWFuIGRpZmZlcmVuY2UiKQpwCiMgZ2dzYXZlICgiUUsgRjJfMDcucGRmIiwgcGxvdCA9IHAsIGhlaWdodCA9IHBoLCB3aWR0aCA9IHB3LCB1bml0cz0nY20nKQoKYGBgCgo=