Low et al (2016) examined the effects of two different anesthetics on
aspects of the physiology of the mouse. Twelve mice were anesthetized
with isoflurane and eleven mice were anesthetized with alpha chloralose
and blood CO2 levels were recorded after 120 minutes. The
H0 was that there is no difference between the
anesthetics in the mean blood CO2 level. This is an
independent comparison because individual mice were only given one of
the two anesthetics.
Preliminaries
First, load the required packages (tidyverse, RMisc, MKinfer, car,
emmeans)
Import low data file
low <- read.csv("../data/lowco2.csv")
low
Get summary statistics by anesthetic
low_stats <- summarySE(data=low,measurevar="co2", groupvars="anesth")
low_stats
low %>%
group_by (anesth) %>%
summarise (median = median(co2), mean=mean(co2))
We will use a t-test for evaluating differences between two group
means.
Fitting a simple linear model with anaesthetic as a categorical
predictor (see Boxes 6.4 and 6.5) provides additional information
including an ANOVA table and allows effect sizes to be calculated
low.aov <- aov(co2~anesth,data=low)
tidy(low.aov, conf.int=TRUE)
low.emm <- emmeans(low.aov,"anesth")
eff_size(low.emm, sigma=sigma(low.aov), edf=df.residual(low.aov))
contrast effect.size SE df lower.CL upper.CL
ac - iso 1.29 0.463 21 0.329 2.25
sigma used for effect sizes: 16.2
Confidence level used: 0.95
Note that we’ve chosen to show a standardized effect size, using the
pooled variance from the analysis of variance - Residual MS = 262.44,
and √262.44 = 16.2
While we prefer graphical methods for assessing assumptions, we can
evaluate differences between group variances with Levene’s test
leveneTest(co2 ~ anesth, low)
Warning: group coerced to factor.
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 2.604 0.1215
21
Comparing group means with a t-test assuming equal variances
t.test(co2~anesth,var.equal=TRUE, data=low)
Two Sample t-test
data: co2 by anesth
t = 3.0927, df = 21, p-value = 0.005515
alternative hypothesis: true difference in means between group ac and group iso is not equal to 0
95 percent confidence interval:
6.849172 34.969010
sample estimates:
mean in group ac mean in group iso
70.90909 50.00000
Comparing group means with a t-test allowing different group
variances
t.test(co2~anesth,data=low)
Welch Two Sample t-test
data: co2 by anesth
t = 3.0206, df = 15.485, p-value = 0.008362
alternative hypothesis: true difference in means between group ac and group iso is not equal to 0
95 percent confidence interval:
6.194866 35.623316
sample estimates:
mean in group ac mean in group iso
70.90909 50.00000
The non-parametric Wilcoxon-Mann-Whitney test assesses whether the
two samples come from identical populations that don’t have to be
normally distributed
wilcox.test(co2~anesth,data=low)
Warning: cannot compute exact p-value with ties
Wilcoxon rank sum test with continuity correction
data: co2 by anesth
W = 114, p-value = 0.003398
alternative hypothesis: true location shift is not equal to 0
sum(rank(low$co2)[low$anesth=="ac"])
[1] 180
sum(rank(low$co2)[low$anesth=="iso"])
[1] 96
LS0tCnRpdGxlOiAiUUsgQm94IDIuMiIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICBkZl9wcmludDogcGFnZWQKICBodG1sX25vdGVib29rOgogICAgdGhlbWU6IGZsYXRseQotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKTG93IGV0IGFsICgyMDE2KSBleGFtaW5lZCB0aGUgZWZmZWN0cyBvZiB0d28gZGlmZmVyZW50IGFuZXN0aGV0aWNzIG9uIGFzcGVjdHMgb2YgdGhlIHBoeXNpb2xvZ3kgb2YgdGhlIG1vdXNlLiBUd2VsdmUgbWljZSB3ZXJlIGFuZXN0aGV0aXplZCB3aXRoIGlzb2ZsdXJhbmUgYW5kIGVsZXZlbiBtaWNlIHdlcmUgYW5lc3RoZXRpemVkIHdpdGggYWxwaGEgY2hsb3JhbG9zZSBhbmQgYmxvb2QgQ09+Mn4gbGV2ZWxzIHdlcmUgcmVjb3JkZWQgYWZ0ZXIgMTIwIG1pbnV0ZXMuIFRoZSAqSCp+MH4gd2FzIHRoYXQgdGhlcmUgaXMgbm8gZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBhbmVzdGhldGljcyBpbiB0aGUgbWVhbiBibG9vZCBDT34yfiBsZXZlbC4gVGhpcyBpcyBhbiBpbmRlcGVuZGVudCBjb21wYXJpc29uIGJlY2F1c2UgaW5kaXZpZHVhbCBtaWNlIHdlcmUgb25seSBnaXZlbiBvbmUgb2YgdGhlIHR3byBhbmVzdGhldGljcy4KCiMjIFByZWxpbWluYXJpZXMKCkZpcnN0LCBsb2FkIHRoZSByZXF1aXJlZCBwYWNrYWdlcyAodGlkeXZlcnNlLCBSTWlzYywgTUtpbmZlciwgY2FyLCBlbW1lYW5zKQoKYGBge3IgaW5jbHVkZT1GQUxTRSwgcmVzdWx0cz0naGlkZSd9CmRldnRvb2xzOjpzb3VyY2VfdXJsKCJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vbWprZW91Z2gvbWprZW91Z2guZ2l0aHViLmlvL3JlZnMvaGVhZHMvbWFpbi9SL2xpYnJhcmllcy5SIikKYGBgCgpJbXBvcnQgbG93IGRhdGEgZmlsZQoKYGBge3J9CmxvdyA8LSByZWFkLmNzdigiLi4vZGF0YS9sb3djbzIuY3N2IikKbG93CmBgYAoKIyMgR2V0IHN1bW1hcnkgc3RhdGlzdGljcyBieSBhbmVzdGhldGljCgpgYGB7ciB9Cmxvd19zdGF0cyA8LSBzdW1tYXJ5U0UoZGF0YT1sb3csbWVhc3VyZXZhcj0iY28yIiwgZ3JvdXB2YXJzPSJhbmVzdGgiKQpsb3dfc3RhdHMKbG93ICU+JSAgCiAgZ3JvdXBfYnkgKGFuZXN0aCkgJT4lIApzdW1tYXJpc2UgKG1lZGlhbiA9IG1lZGlhbihjbzIpLCBtZWFuPW1lYW4oY28yKSkKYGBgCgojIyBXZSB3aWxsIHVzZSBhIHQtdGVzdCBmb3IgZXZhbHVhdGluZyBkaWZmZXJlbmNlcyBiZXR3ZWVuIHR3byBncm91cCBtZWFucy4gCgpGaXR0aW5nIGEgc2ltcGxlIGxpbmVhciBtb2RlbCB3aXRoIGFuYWVzdGhldGljIGFzIGEgY2F0ZWdvcmljYWwgcHJlZGljdG9yIChzZWUgQm94ZXMgNi40IGFuZCA2LjUpIHByb3ZpZGVzIGFkZGl0aW9uYWwgaW5mb3JtYXRpb24gaW5jbHVkaW5nIGFuIEFOT1ZBIHRhYmxlIGFuZCBhbGxvd3MgZWZmZWN0IHNpemVzIHRvIGJlIGNhbGN1bGF0ZWQKCmBgYHtyfQpsb3cuYW92IDwtIGFvdihjbzJ+YW5lc3RoLGRhdGE9bG93KQp0aWR5KGxvdy5hb3YsIGNvbmYuaW50PVRSVUUpCgpsb3cuZW1tIDwtIGVtbWVhbnMobG93LmFvdiwiYW5lc3RoIikKZWZmX3NpemUobG93LmVtbSwgc2lnbWE9c2lnbWEobG93LmFvdiksIGVkZj1kZi5yZXNpZHVhbChsb3cuYW92KSkKYGBgCgpOb3RlIHRoYXQgd2UndmUgY2hvc2VuIHRvIHNob3cgYSBzdGFuZGFyZGl6ZWQgZWZmZWN0IHNpemUsIHVzaW5nIHRoZSBwb29sZWQgdmFyaWFuY2UgZnJvbSB0aGUgYW5hbHlzaXMgb2YgdmFyaWFuY2UgLSBSZXNpZHVhbCBNUyA9IDI2Mi40NCwgYW5kIOKImjI2Mi40NCA9IDE2LjIKCiMjIyBXaGlsZSB3ZSBwcmVmZXIgZ3JhcGhpY2FsIG1ldGhvZHMgZm9yIGFzc2Vzc2luZyBhc3N1bXB0aW9ucywgd2UgY2FuIGV2YWx1YXRlIGRpZmZlcmVuY2VzIGJldHdlZW4gZ3JvdXAgdmFyaWFuY2VzIHdpdGggTGV2ZW5lJ3MgdGVzdAoKYGBge3J9CmxldmVuZVRlc3QoY28yIH4gYW5lc3RoLCBsb3cpCmBgYAoKIyMjIENvbXBhcmluZyBncm91cCBtZWFucyB3aXRoIGEgdC10ZXN0IGFzc3VtaW5nIGVxdWFsIHZhcmlhbmNlcwoKYGBge3J9CnQudGVzdChjbzJ+YW5lc3RoLHZhci5lcXVhbD1UUlVFLCBkYXRhPWxvdykKYGBgCgojIyMgQ29tcGFyaW5nIGdyb3VwIG1lYW5zIHdpdGggYSB0LXRlc3QgYWxsb3dpbmcgZGlmZmVyZW50IGdyb3VwIHZhcmlhbmNlcwoKYGBge3J9CnQudGVzdChjbzJ+YW5lc3RoLGRhdGE9bG93KQpgYGAKCiMjIFRoZSBub24tcGFyYW1ldHJpYyBXaWxjb3hvbi1NYW5uLVdoaXRuZXkgdGVzdCBhc3Nlc3NlcyB3aGV0aGVyIHRoZSB0d28gc2FtcGxlcyBjb21lIGZyb20gaWRlbnRpY2FsIHBvcHVsYXRpb25zIHRoYXQgZG9uJ3QgaGF2ZSB0byBiZSBub3JtYWxseSBkaXN0cmlidXRlZAoKYGBge3J9CndpbGNveC50ZXN0KGNvMn5hbmVzdGgsZGF0YT1sb3cpCnN1bShyYW5rKGxvdyRjbzIpW2xvdyRhbmVzdGg9PSJhYyJdKQpzdW0ocmFuayhsb3ckY28yKVtsb3ckYW5lc3RoPT0iaXNvIl0pCmBgYAoKCg==