We continue with the pond invertebrate example from Box 16.1. We will now use these data to produce an NMDS ordination plot showing the relationship among ponds based on invertebrate family abundances. We will compare this analysis to one where the abundances are converted to proportions of pond totals and where abundances are converted to presence-absence data. We will also compare the four management groups using ANOSIM, PERMANOVA, and MV-ABUND and examine relationships between the patterns among ponds based on invertebrate families and patterns based on environmental variables.
Load graphics tweaks and core set of packages
Load additional packages: vegan, mvabund
Load lemminvert data and remove labels
lemminvert <- read_csv("../data/lemminvert.csv")
lemminvert1 <- lemminvert[,-(1:3)]
lemminvert.bc <- vegdist(lemminvert1,'bray') #Create Bray-Curtis matrix
lemminvert.mds <- metaMDS(lemminvert.bc,k=2,autotransform=FALSE)
Run 0 stress 0.1156702016
Run 1 stress 0.115322946
... New best solution
... Procrustes: rmse 0.0189448746 max resid 0.07577272532
Run 2 stress 0.1153228722
... New best solution
... Procrustes: rmse 0.0001332765475 max resid 0.0005149485731
... Similar to previous best
Run 3 stress 0.1172333437
Run 4 stress 0.1156700569
... Procrustes: rmse 0.01891880149 max resid 0.07525363734
Run 5 stress 0.1156700851
... Procrustes: rmse 0.01895538217 max resid 0.0755501726
Run 6 stress 0.1153230967
... Procrustes: rmse 0.0002702610702 max resid 0.001057340867
... Similar to previous best
Run 7 stress 0.1153229703
... Procrustes: rmse 0.0001739346127 max resid 0.0006742127962
... Similar to previous best
Run 8 stress 0.1156700194
... Procrustes: rmse 0.01892698264 max resid 0.07536101802
Run 9 stress 0.1153229521
... Procrustes: rmse 0.0001457488044 max resid 0.0005644363622
... Similar to previous best
Run 10 stress 0.1172331317
Run 11 stress 0.1156701841
... Procrustes: rmse 0.01890121632 max resid 0.07510464765
Run 12 stress 0.1156701456
... Procrustes: rmse 0.01890185452 max resid 0.07512527764
Run 13 stress 0.1153229505
... Procrustes: rmse 0.0001607374236 max resid 0.0006251011904
... Similar to previous best
Run 14 stress 0.1153230711
... Procrustes: rmse 0.0002520185237 max resid 0.0009852698337
... Similar to previous best
Run 15 stress 0.1153228854
... Procrustes: rmse 6.752969035e-05 max resid 0.0002566588905
... Similar to previous best
Run 16 stress 0.1153230349
... Procrustes: rmse 0.0002138194223 max resid 0.0008367394134
... Similar to previous best
Run 17 stress 0.1156700584
... Procrustes: rmse 0.01894639128 max resid 0.07549075399
Run 18 stress 0.1153229199
... Procrustes: rmse 0.0001164512099 max resid 0.0004509812175
... Similar to previous best
Run 19 stress 0.1156700244
... Procrustes: rmse 0.01893168798 max resid 0.07538220799
Run 20 stress 0.1156701597
... Procrustes: rmse 0.0188997287 max resid 0.07511089486
*** Best solution repeated 9 times
stressplot(lemminvert.mds, main="Shepard plot")
lemminvert.mds
Call:
metaMDS(comm = lemminvert.bc, k = 2, autotransform = FALSE)
global Multidimensional Scaling using monoMDS
Data: lemminvert.bc
Distance: bray
Dimensions: 2
Stress: 0.1153228722
Stress type 1, weak ties
Best solution was repeated 9 times in 20 tries
The best solution was from try 2 (random start)
Scaling: centring, PC rotation, halfchange scaling
Species: scores missing
plot(lemminvert.mds$points,type="n")
text(lemminvert.mds$points,lab=lemminvert$manag,col="black")
points(lemminvert.mds$points,pch=16,col=as.numeric(lemminvert$managsymb))
lemminvert1s <- decostand(lemminvert1, method = "total")
lemminvert1s.bc <- vegdist(lemminvert1s,'bray')
lemminvert1s.mds <- metaMDS(lemminvert1s.bc,k=2,try=20,trymax=40,maxit=200,autotransform=FALSE)
Run 0 stress 0.1649421061
Run 1 stress 0.1649065617
... New best solution
... Procrustes: rmse 0.01494844861 max resid 0.05093303219
Run 2 stress 0.1763011963
Run 3 stress 0.1969958637
Run 4 stress 0.1648801187
... New best solution
... Procrustes: rmse 0.008275086618 max resid 0.03127678786
Run 5 stress 0.1709487893
Run 6 stress 0.2054917683
Run 7 stress 0.170948787
Run 8 stress 0.1783397316
Run 9 stress 0.2008724331
Run 10 stress 0.2197541405
Run 11 stress 0.1783397314
Run 12 stress 0.1790250486
Run 13 stress 0.1763011964
Run 14 stress 0.1793740312
Run 15 stress 0.1736187217
Run 16 stress 0.2005321408
Run 17 stress 0.2031756856
Run 18 stress 0.1847458372
Run 19 stress 0.1742414652
Run 20 stress 0.1856856402
Run 21 stress 0.1649421052
... Procrustes: rmse 0.01127697205 max resid 0.04881201499
Run 22 stress 0.1832527941
Run 23 stress 0.1707635696
Run 24 stress 0.1736187271
Run 25 stress 0.1779554366
Run 26 stress 0.1832527928
Run 27 stress 0.1835084232
Run 28 stress 0.1742453837
Run 29 stress 0.1648801121
... New best solution
... Procrustes: rmse 1.485100402e-05 max resid 2.888931322e-05
... Similar to previous best
*** Best solution repeated 1 times
stressplot(lemminvert1s.mds, main="Shepard plot")
lemminvert1s.mds
Call:
metaMDS(comm = lemminvert1s.bc, k = 2, try = 20, trymax = 40, autotransform = FALSE, maxit = 200)
global Multidimensional Scaling using monoMDS
Data: lemminvert1s.bc
Distance: bray
Dimensions: 2
Stress: 0.1648801121
Stress type 1, weak ties
Best solution was repeated 1 time in 29 tries
The best solution was from try 29 (random start)
Scaling: centring, PC rotation, halfchange scaling
Species: scores missing
plot(lemminvert1s.mds$points,type="n")
text(lemminvert1s.mds$points,lab=lemminvert$manag,col="black")
points(lemminvert1s.mds$points,pch=16,col=as.numeric(lemminvert$managsymb))
lemminvert.jac <- vegdist(lemminvert1,binary=TRUE,method='jaccard')
lemminvert.jac.mds <- metaMDS(lemminvert.jac,k=2,autotransform=FALSE)
Run 0 stress 0.1676824162
Run 1 stress 0.2107007937
Run 2 stress 0.1996370419
Run 3 stress 0.1972852048
Run 4 stress 0.1676823255
... New best solution
... Procrustes: rmse 0.0002381066046 max resid 0.0007976072167
... Similar to previous best
Run 5 stress 0.1676824713
... Procrustes: rmse 0.0002957253877 max resid 0.000990869083
... Similar to previous best
Run 6 stress 0.167682628
... Procrustes: rmse 0.0003271587264 max resid 0.001111299241
... Similar to previous best
Run 7 stress 0.2080583428
Run 8 stress 0.1676826526
... Procrustes: rmse 0.0003639721309 max resid 0.001238599788
... Similar to previous best
Run 9 stress 0.2057095586
Run 10 stress 0.2153016562
Run 11 stress 0.1676824279
... Procrustes: rmse 0.0001916372554 max resid 0.0006558477933
... Similar to previous best
Run 12 stress 0.167682576
... Procrustes: rmse 0.0003141864367 max resid 0.001071523201
... Similar to previous best
Run 13 stress 0.1676824319
... Procrustes: rmse 0.0001718822342 max resid 0.0005840181324
... Similar to previous best
Run 14 stress 0.2096575865
Run 15 stress 0.1676827318
... Procrustes: rmse 0.0004701871926 max resid 0.001586789546
... Similar to previous best
Run 16 stress 0.2045142119
Run 17 stress 0.1926151338
Run 18 stress 0.167682351
... Procrustes: rmse 6.396017731e-05 max resid 0.0002169851584
... Similar to previous best
Run 19 stress 0.1676823616
... Procrustes: rmse 0.0001270003117 max resid 0.000416667006
... Similar to previous best
Run 20 stress 0.2016022116
*** Best solution repeated 10 times
stressplot(lemminvert.jac.mds, main="Shepard plot")
lemminvert.jac.mds
Call:
metaMDS(comm = lemminvert.jac, k = 2, autotransform = FALSE)
global Multidimensional Scaling using monoMDS
Data: lemminvert.jac
Distance: binary jaccard
Dimensions: 2
Stress: 0.1676823255
Stress type 1, weak ties
Best solution was repeated 10 times in 20 tries
The best solution was from try 4 (random start)
Scaling: centring, PC rotation, halfchange scaling
Species: scores missing
plot(lemminvert.jac.mds$points,type="n")
text(lemminvert.jac.mds$points,lab=lemminvert$manag,col="black")
points(lemminvert.jac.mds$points,pch=16,col=as.numeric(lemminvert$managsymb))
Select 11 variables (same as ch15)
lemmenv <- read_csv("../data/lemmenv.csv")
Rows: 23 Columns: 17── Column specification ────────────────────────────────────────────────────────────
Delimiter: ","
chr (2): site, manag
dbl (15): depth, silt, ph, o2, temp, surface, trans, cond, chla, tn, tp, susps, ...
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
lemmenv1 <- lemmenv[,c(3:5,7:8,10:13,16:17)]
# standardize predictors
lemmenv1$lchla <- log10(lemmenv1$chla)
lemmenv1$depth <- scale(lemmenv1$depth)
lemmenv1$silt <- scale(lemmenv1$silt)
lemmenv1$ph <- scale(lemmenv1$ph)
lemmenv1$temp <- scale(lemmenv1$temp)
lemmenv1$surface <- scale(lemmenv1$surface)
lemmenv1$cond <- scale(lemmenv1$cond)
lemmenv1$lchla <- scale(lemmenv1$lchla)
lemmenv1$tn <- scale(lemmenv1$tn)
lemmenv1$tp <- scale(lemmenv1$tp)
lemmenv1$reed <- scale(lemmenv1$reed)
lemmenv1$emerg <- scale(lemmenv1$emerg)
# plot using original abundances
fit1 <- envfit(lemminvert.mds, lemmenv1)
fit1
***VECTORS
NMDS1 NMDS2 r2 Pr(>r)
depth 0.04739254 -0.99887634 0.17444 0.147
silt 0.86955032 0.49384434 0.12896 0.265
ph 0.29026870 -0.95694518 0.12647 0.253
temp -0.16698561 -0.98595933 0.00161 0.989
surface 0.01866995 -0.99982570 0.21048 0.106
cond -0.19976409 -0.97984402 0.08806 0.432
chla 0.59023073 -0.80723459 0.08147 0.411
tn -0.49309516 -0.86997538 0.19841 0.117
tp -0.36949074 -0.92923441 0.34855 0.021 *
reed -0.67315093 0.73950512 0.21729 0.091 .
emerg -0.62436360 0.78113385 0.12489 0.281
lchla 0.15591532 -0.98777043 0.15802 0.182
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Permutation: free
Number of permutations: 999
plot(fit1)
Error in strwidth(labels, cex = cex, ...) :
plot.new has not been called yet
# plot using proportional abundances
fit2 <- envfit(lemminvert1s.mds, lemmenv1)
fit2
***VECTORS
NMDS1 NMDS2 r2 Pr(>r)
depth 0.97880776 -0.20478126 0.15296 0.204
silt -0.10985270 -0.99394788 0.02816 0.718
ph 0.94740494 0.32003732 0.08464 0.419
temp 0.20181041 -0.97942461 0.02851 0.787
surface 0.86028214 -0.50981824 0.13431 0.214
cond 0.46289144 -0.88641498 0.08084 0.419
chla 0.64368593 0.76528976 0.02808 0.763
tn 0.33297274 0.94293645 0.15822 0.179
tp 0.57504149 0.81812425 0.14517 0.179
reed -0.70398692 0.71021293 0.26946 0.058 .
emerg -0.79831105 0.60224536 0.15104 0.191
lchla 0.98631265 0.16488587 0.11666 0.314
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Permutation: free
Number of permutations: 999
plot(fit2)
Error in strwidth(labels, cex = cex, ...) :
plot.new has not been called yet
# plot using pa
fit3 <- envfit(lemminvert.jac.mds, lemmenv1)
fit3
***VECTORS
NMDS1 NMDS2 r2 Pr(>r)
depth -0.67050446 -0.74190550 0.02424 0.782
silt -0.81424703 -0.58051853 0.00658 0.929
ph 0.05657893 -0.99839813 0.04594 0.609
temp 0.56727107 -0.82353114 0.03545 0.688
surface -0.01791782 -0.99983946 0.06936 0.473
cond -0.07819187 -0.99693833 0.05738 0.496
chla 0.11377452 -0.99350660 0.01580 0.824
tn 0.10835065 -0.99411274 0.04330 0.668
tp 0.24001764 -0.97076853 0.10239 0.336
reed 0.36901297 -0.92942425 0.06176 0.531
emerg 0.89198410 0.45206677 0.19599 0.103
lchla 0.43934019 -0.89832076 0.01534 0.851
Permutation: free
Number of permutations: 999
plot(fit3)
Error in strwidth(labels, cex = cex, ...) :
plot.new has not been called yet
Check homogeneity of dispersions on original abundances; if OK, for comparison run anosim, permanova and mvabund
lemminvert.disp <- betadisper(lemminvert.bc,lemminvert$manag)
anova(lemminvert.disp)
Analysis of Variance Table
Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)
Groups 3 0.05364661 0.017882203 1.06078 0.389
Residuals 19 0.32029544 0.016857655
# anosim on original abundances
lemminvert.ano <- anosim(lemminvert.bc, lemminvert$manag,permutations=999)
summary(lemminvert.ano)
Call:
anosim(x = lemminvert.bc, grouping = lemminvert$manag, permutations = 999)
Dissimilarity: bray
ANOSIM statistic R: 0.1729514
Significance: 0.02
Permutation: free
Number of permutations: 999
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0939 0.1264 0.1606 0.1922
Dissimilarity ranks between and within classes:
0% 25% 50% 75% 100% N
Between 1 68.00 133.0 200.00 253 197
li 10 15.75 43.5 105.50 181 10
nf 34 93.00 127.0 151.75 193 10
nm 25 64.00 132.0 177.00 236 21
yf 6 67.50 85.0 163.00 195 15
# permanova on original abundances
lemminvert.ado <- adonis2(lemminvert.bc~manag,data=lemminvert,permutations=999)
print(lemminvert.ado)
Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999
adonis2(formula = lemminvert.bc ~ manag, data = lemminvert, permutations = 999)
Df SumOfSqs R2 F Pr(>F)
Model 3 1.3565598 0.25111301 2.12366 0.002 **
Residual 19 4.0456287 0.74888699
Total 22 5.4021885 1.00000000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# mv-abund on original abundances
lemminvertmv <- mvabund(lemminvert1)
lemminvertmv.mv <- manyglm(lemminvertmv~lemmenv$manag,family="negative_binomial")
plot(lemminvertmv.mv)
anova(lemminvertmv.mv)
Time elapsed: 0 hr 0 min 3 sec
Analysis of Deviance Table
Model: lemminvertmv ~ lemmenv$manag
Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 22
lemmenv$manag 19 3 232.0596 0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming uncorrelated response (for faster computation)
P-value calculated using 999 iterations via PIT-trap resampling.
Repeat process for proportional abundance data
# check homog of dispersions on prop abundances
lemminvert1s.disp <- betadisper(lemminvert1s.bc,lemminvert$manag)
anova(lemminvert1s.disp)
Analysis of Variance Table
Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)
Groups 3 0.02873894 0.0095796473 0.51922 0.67413
Residuals 19 0.35055280 0.0184501474
# anosim on proportional abundances
lemminvert1s.ano <- anosim(lemminvert1s.bc, lemminvert$manag,permutations=999)
summary(lemminvert1s.ano)
Call:
anosim(x = lemminvert1s.bc, grouping = lemminvert$manag, permutations = 999)
Dissimilarity: bray
ANOSIM statistic R: 0.117839
Significance: 0.07
Permutation: free
Number of permutations: 999
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0958 0.1363 0.1644 0.2052
Dissimilarity ranks between and within classes:
0% 25% 50% 75% 100% N
Between 1 63.0 132.0 200.00 253 197
li 15 46.0 65.5 81.75 159 10
nf 42 88.0 102.5 186.75 191 10
nm 7 83.0 149.0 173.00 240 21
yf 2 104.5 123.0 161.00 236 15
# permanova on proportional abundances
lemminvert1s.ado <- adonis2(lemminvert1s.bc~manag,data=lemminvert,permutations=999)
print(lemminvert1s.ado)
Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999
adonis2(formula = lemminvert1s.bc ~ manag, data = lemminvert, permutations = 999)
Df SumOfSqs R2 F Pr(>F)
Model 3 0.8296405 0.23689983 1.96614 0.03 *
Residual 19 2.6724326 0.76310017
Total 22 3.5020732 1.00000000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
mv-abund on proportional abundances using composition=TRUE (this either doesnt work or is very slow!!!) Note: when composition=TRUE, gives error message; runs with composition=FALSE, but that isn’t relative abundance
lemminvert1smv.mv <- manyglm(lemminvertmv~lemmenv$manag,composition=TRUE,family="negative_binomial")
Error in manyglm(lemminvertmv ~ lemmenv$manag, composition = TRUE, family = "negative_binomial") :
object 'data2' not found
plot(lemminvert1smv.mv)
Error: object 'lemminvert1smv.mv' not found
anova(lemminvert1smv.mv)
Error: object 'lemminvert1smv.mv' not found
try mv-abund on standardized abunds from earlier
lemminvert1smv <- mvabund(lemminvert1s)
lemminvert1smv.mv <- manyglm(lemminvert1smv~lemmenv$manag,family="negative_binomial")
Warning: Non-integer data are fitted to the negative.binomial model.
plot(lemminvert1smv.mv)
anova(lemminvert1smv.mv)
Time elapsed: 0 hr 0 min 1 sec
Analysis of Deviance Table
Model: lemminvert1smv ~ lemmenv$manag
Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 22
lemmenv$manag 19 3 8.3276 0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming uncorrelated response (for faster computation)
P-value calculated using 999 iterations via PIT-trap resampling.
Finally, run analysis on presence-absence data
# check homog of dispersions on pa
lemminvert.jac.disp <- betadisper(lemminvert.jac,lemminvert$manag)
anova(lemminvert.jac.disp)
Analysis of Variance Table
Response: Distances
Df Sum Sq Mean Sq F value Pr(>F)
Groups 3 0.058952285 0.0196507616 2.1726 0.12472
Residuals 19 0.171851500 0.0090448158
# anosim on pa
lemminvert.jac.ano <- anosim(lemminvert.jac, lemminvert$manag,permutations=999)
summary(lemminvert.jac.ano)
Call:
anosim(x = lemminvert.jac, grouping = lemminvert$manag, permutations = 999)
Dissimilarity: binary jaccard
ANOSIM statistic R: 0.1024293
Significance: 0.077
Permutation: free
Number of permutations: 999
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0936 0.1144 0.1389 0.1722
Dissimilarity ranks between and within classes:
0% 25% 50% 75% 100% N
Between 1.0 72.000 131.50 186.500 253.0 197
li 21.5 53.250 72.75 113.125 204.5 10
nf 5.5 34.625 66.00 100.500 219.5 10
nm 41.0 117.000 195.50 230.500 249.0 21
yf 21.5 41.000 72.00 128.250 192.5 15
# permanova on pa
lemminvert.jac.ado <- adonis2(lemminvert.jac~manag,data=lemminvert,permutations=999)
print(lemminvert.jac.ado)
Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999
adonis2(formula = lemminvert.jac ~ manag, data = lemminvert, permutations = 999)
Df SumOfSqs R2 F Pr(>F)
Model 3 0.54394094 0.21570186 1.74183 0.013 *
Residual 19 1.97778484 0.78429814
Total 22 2.52172579 1.00000000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
mv-abund on pa
lemminvert1pa <- decostand(lemminvert1, method = "pa")
lemminvert1pamv <- mvabund(lemminvert1pa)
lemminvert1pamv.mv <- manyglm(lemminvert1pamv~lemmenv$manag,family="binomial")
plot(lemminvert1pamv.mv)
anova(lemminvert1pamv.mv)
Time elapsed: 0 hr 0 min 0 sec
Analysis of Deviance Table
Model: lemminvert1pamv ~ lemmenv$manag
Multivariate test:
Res.Df Df.diff Dev Pr(>Dev)
(Intercept) 22
lemmenv$manag 19 3 127.529 0.025 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Arguments:
Test statistics calculated assuming uncorrelated response (for faster computation)
P-value calculated using 999 iterations via PIT-trap resampling.
# bio-env raw data
bioenv(lemminvert.bc, lemmenv1, method="spearman", metric="euclidean")
4095 possible subsets (this may take time...)
Call:
bioenv(comm = lemminvert.bc, env = lemmenv1, method = "spearman", metric = "euclidean")
Subset of environmental variables with best correlation to community data.
Correlations: spearman
Dissimilarities: bray
Metric: euclidean
Best model has 3 parameters (max. 12 allowed):
depth tp emerg
with correlation 0.1053499931
# bio-env prop data
bioenv(lemminvert1s.bc, lemmenv1,method="spearman", metric="euclidean")
4095 possible subsets (this may take time...)
Call:
bioenv(comm = lemminvert1s.bc, env = lemmenv1, method = "spearman", metric = "euclidean")
Subset of environmental variables with best correlation to community data.
Correlations: spearman
Dissimilarities: bray
Metric: euclidean
Best model has 3 parameters (max. 12 allowed):
depth emerg lchla
with correlation 0.1969941504
# bio-env on pa data
bioenv(lemminvert.jac, lemmenv1,method="spearman", metric="euclidean")
4095 possible subsets (this may take time...)
Call:
bioenv(comm = lemminvert.jac, env = lemmenv1, method = "spearman", metric = "euclidean")
Subset of environmental variables with best correlation to community data.
Correlations: spearman
Dissimilarities: binary jaccard
Metric: euclidean
Best model has 4 parameters (max. 12 allowed):
surface tp reed emerg
with correlation 0.0649229655
# mantel test
lemmenv.euc <- vegdist(lemmenv1,"euclidean")
mantel(lemminvert.bc,lemmenv.euc,method="spearman")
Mantel statistic based on Spearman's rank correlation rho
Call:
mantel(xdis = lemminvert.bc, ydis = lemmenv.euc, method = "spearman")
Mantel statistic r: -0.04405329
Significance: 0.622
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.187 0.242 0.284 0.346
Permutation: free
Number of permutations: 999
mantel(lemminvert.bc,lemmenv.euc,method="pearson")
Mantel statistic based on Pearson's product-moment correlation
Call:
mantel(xdis = lemminvert.bc, ydis = lemmenv.euc, method = "pearson")
Mantel statistic r: -0.01516855
Significance: 0.515
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.233 0.297 0.364 0.404
Permutation: free
Number of permutations: 999
# raw abundances
lemminvert2.ado <- adonis2(lemminvert.bc~depth+silt+ph+temp+surface+cond+lchla+tn+tp+reed+emerg,data=lemmenv1,permutations=999)
print(lemminvert2.ado)
Permutation test for adonis under reduced model
Permutation: free
Number of permutations: 999
adonis2(formula = lemminvert.bc ~ depth + silt + ph + temp + surface + cond + lchla + tn + tp + reed + emerg, data = lemmenv1, permutations = 999)
Df SumOfSqs R2 F Pr(>F)
Model 11 3.0380838 0.56238019 1.28509 0.107
Residual 11 2.3641047 0.43761981
Total 22 5.4021885 1.00000000
lemminvert3.ado <- adonis2(lemminvert.bc~depth+silt+ph+temp+surface+cond+lchla+tn+tp+reed+emerg,data=lemmenv1,by="margin",permutations=999)
print(lemminvert3.ado)
Permutation test for adonis under reduced model
Marginal effects of terms
Permutation: free
Number of permutations: 999
adonis2(formula = lemminvert.bc ~ depth + silt + ph + temp + surface + cond + lchla + tn + tp + reed + emerg, data = lemmenv1, permutations = 999, by = "margin")
Df SumOfSqs R2 F Pr(>F)
depth 1 0.3294949 0.06099286 1.53311 0.156
silt 1 0.1810559 0.03351528 0.84244 0.565
ph 1 0.2562631 0.04743690 1.19237 0.299
temp 1 0.2256969 0.04177879 1.05015 0.376
surface 1 0.2482610 0.04595563 1.15514 0.329
cond 1 0.0572557 0.01059861 0.26641 0.989
lchla 1 0.3096201 0.05731384 1.44064 0.156
tn 1 0.1236755 0.02289360 0.57545 0.795
tp 1 0.3417611 0.06326345 1.59019 0.133
reed 1 0.2324913 0.04303650 1.08176 0.396
emerg 1 0.3821963 0.07074842 1.77833 0.084 .
Residual 11 2.3641047 0.43761981
Total 22 5.4021885 1.00000000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
lemminvertmv <- mvabund(lemminvert1)
lemminvertmv.mv <- manyglm(lemminvertmv~lemmenv1$depth+lemmenv1$silt+lemmenv1$ph+lemmenv1$temp+lemmenv1$surface+lemmenv1$cond+lemmenv1$lchla+lemmenv1$tn+lemmenv1$tp+lemmenv1$reed+lemmenv1$emerg,family="negative_binomial")
# use summary to get Wald tests (at least vaguely comparable to Type III Permanova results)
summary(lemminvertmv.mv)
Test statistics:
wald value Pr(>wald)
(Intercept) 52.51585 0.010 **
lemmenv1$depth 6.18052 0.389
lemmenv1$silt 6.81522 0.234
lemmenv1$ph 6.41864 0.352
lemmenv1$temp 6.45409 0.382
lemmenv1$surface 7.05475 0.239
lemmenv1$cond 4.69355 0.769
lemmenv1$lchla 7.41865 0.221
lemmenv1$tn 5.29815 0.642
lemmenv1$tp 6.96154 0.318
lemmenv1$reed 6.07868 0.513
lemmenv1$emerg 5.45911 0.592
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Test statistic: 28.80876, p-value: 0.105
Arguments:
Test statistics calculated assuming response assumed to be uncorrelated
P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
plot(lemminvertmv.mv)
br=c("nm","li","nf","yf")
la=c("None", "Light", "No fish", "Young fish")
a<-as.data.frame(lemminvert.mds$points)
a<-cbind(lemminvert[c(1:3)],a) #Add site names & symbols from original data file
p1<-ggplot(data=a, aes(x=MDS1, y=MDS2, shape=manag, ) )+
geom_point()+
labs(y="MDS2", x="MDS1", title="Raw")+
scale_shape_manual(values=sym4,
name="Management",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
as<-as.data.frame(lemminvert1s.mds$points)
as<-cbind(lemminvert[c(1:3)],as) #Add site names & symbols from original data file
p2<-ggplot(data=as, aes(x=MDS1, y=MDS2, shape=manag, ) )+
geom_point()+
labs(y=NULL, x="MDS1", title="Standardized")+
scale_shape_manual(values=sym4,
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
aj<-as.data.frame(lemminvert.jac.mds$points)
aj<-cbind(lemminvert[c(1:3)],aj) #Add site names & symbols from original data file
p3<-ggplot(data=aj, aes(x=MDS1, y=MDS2, shape=manag, ) )+
geom_point()+
labs(y=NULL, x="MDS1", title="Jaccard")+
scale_shape_manual(values=sym4,
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
p4<-p1+p2+p3+plot_layout(guides='collect')
p4
Colour version
p1a<-ggplot(data=a, aes(x=MDS1, y=MDS2, color=manag, ) )+
geom_point()+
labs(y="MDS2", x="MDS1", title="Raw")+
scale_color_uchicago(
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
p2a<-ggplot(data=as, aes(x=MDS1, y=MDS2, color=manag, ) )+
geom_point()+
labs(y=NULL, x="MDS1", title="Standardized")+
scale_color_uchicago(
name="Management",
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
p3a<-ggplot(data=aj, aes(x=MDS1, y=MDS2, color=manag, ) )+
geom_point()+
labs(y=NULL, x="MDS1", title="Jacard")+
scale_color_uchicago(
breaks=br,
labels=la,
guide =
guide_legend(label.theme = element_text(size=6),
title=NULL)
)+
theme_qk()
p4a<-p1a+p2a+p3a+plot_layout(guides='collect')&theme(axis.text=element_blank())
p4a