Giri et al. (2016) were interested in the capacity of Atlantic salmon
(Salmo salar), grown in an aquaculture situation, to deliver
high levels of omega-3 long-chain polyunsaturated fatty acids (PUFA) in
their tissues. Specifically, they tested whether several micronutrients
(iron, zinc, magnesium) and coenzymes (riboflavin, biotin and niacin)
could increase the conversion from short- to long-chain PUFA. They used
four treatments, a diet lacking in these micronutrients and coenzymes
(T-0), a diet with normal levels (T-100), and two levels of
fortification, where the enzymes and micronutrients were 300% and 600%
greater than normal (T-300 and T-600).
E. Peter Steenstra/USFWS, Public domain, via Wikimedia Commons
Giri, S. S., Graham, J., Hamid, N. K. A., Donald, J. A. &
Turchini, G. M. (2016). Dietary micronutrients and in vivo n−3 LC-PUFA
biosynthesis in Atlantic salmon. Aquaculture, 452, 416-25.
Link to paper;
the data are available here
Preliminaries
First, load the required packages (sjstats, pwr)
Import giri data file (giri.csv)
giri <- read.csv("../data/giri.csv")
head(giri,10)
Make treat a factor
giri$treat <- factor(giri$treat)
Fit model for long-chain omega-3 fatty acids as the response
variable
This is the variable n.3.lc.PUFA
giri.aov <- aov(n.3.LC.PUFA~treat, data=giri)
Check diagnostics. We are most interested in the residual plot.
plot(giri.aov)
Nothing of concern in diagnostic plots
Examine model results.
tidy(giri.aov)
Get effect sizes
#effectsizes used here to get eta-squared values, which tidy doesn't provide
effectsize(giri.aov)
For one-way between subjects designs, partial eta squared is equivalent to eta squared. Returning eta squared.
# Effect Size for ANOVA
Parameter | Eta2 | 95% CI
-------------------------------
treat | 0.70 | [0.18, 1.00]
- One-sided CIs: upper bound fixed at [1.00].
effectsize(giri.aov, type = "omega")
For one-way between subjects designs, partial omega squared is equivalent to omega squared. Returning omega squared.
# Effect Size for ANOVA
Parameter | Omega2 | 95% CI
---------------------------------
treat | 0.57 | [0.00, 1.00]
- One-sided CIs: upper bound fixed at [1.00].
effectsize(giri.aov, type = "f")
For one-way between subjects designs, partial eta squared is equivalent to eta squared. Returning eta squared.
# Effect Size for ANOVA
Parameter | Cohen's f | 95% CI
-----------------------------------
treat | 1.54 | [0.48, Inf]
- One-sided CIs: upper bound fixed at [Inf].
emmeans(giri.aov, ~treat)
treat emmean SE df lower.CL upper.CL
0 9.05 0.307 8 8.35 9.76
100 10.59 0.307 8 9.88 11.30
300 10.70 0.307 8 9.99 11.40
600 10.47 0.307 8 9.77 11.18
Confidence level used: 0.95
Do linear polynomial contrast
contrasts(giri$treat) <- contr.poly(4, scores=c(0, 100, 300, 600))
giri1.aov <- aov(n.3.LC.PUFA~treat, data=giri)
summary.aov(giri1.aov, split=list(treat=list("Linear"=1, "Quadratic"=2)))
Df Sum Sq Mean Sq F value Pr(>F)
treat 3 5.355 1.785 6.330 0.0166 *
treat: Linear 1 1.730 1.730 6.134 0.0383 *
treat: Quadratic 1 2.496 2.496 8.851 0.0177 *
Residuals 8 2.256 0.282
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
LS0tCnRpdGxlOiAiUUsgQm94IDYuNCIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0aGVtZTogZmxhdGx5Ci0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgpHaXJpIGV0IGFsLiAoMjAxNikgd2VyZSBpbnRlcmVzdGVkIGluIHRoZSBjYXBhY2l0eSBvZiBBdGxhbnRpYyBzYWxtb24gKCpTYWxtbyBzYWxhciopLCBncm93biBpbiBhbiBhcXVhY3VsdHVyZSBzaXR1YXRpb24sIHRvIGRlbGl2ZXIgaGlnaCBsZXZlbHMgb2Ygb21lZ2EtMyBsb25nLWNoYWluIHBvbHl1bnNhdHVyYXRlZCBmYXR0eSBhY2lkcyAoUFVGQSkgaW4gdGhlaXIgdGlzc3Vlcy4gU3BlY2lmaWNhbGx5LCB0aGV5IHRlc3RlZCB3aGV0aGVyIHNldmVyYWwgbWljcm9udXRyaWVudHMgKGlyb24sIHppbmMsIG1hZ25lc2l1bSkgYW5kIGNvZW56eW1lcyAocmlib2ZsYXZpbiwgYmlvdGluIGFuZCBuaWFjaW4pIGNvdWxkIGluY3JlYXNlIHRoZSBjb252ZXJzaW9uIGZyb20gc2hvcnQtIHRvIGxvbmctY2hhaW4gUFVGQS4gVGhleSB1c2VkIGZvdXIgdHJlYXRtZW50cywgYSBkaWV0IGxhY2tpbmcgaW4gdGhlc2UgbWljcm9udXRyaWVudHMgYW5kIGNvZW56eW1lcyAoVC0wKSwgYSBkaWV0IHdpdGggbm9ybWFsIGxldmVscyAoVC0xMDApLCBhbmQgdHdvIGxldmVscyBvZiBmb3J0aWZpY2F0aW9uLCB3aGVyZSB0aGUgZW56eW1lcyBhbmQgbWljcm9udXRyaWVudHMgd2VyZSAzMDAlIGFuZCA2MDAlIGdyZWF0ZXIgdGhhbiBub3JtYWwgKFQtMzAwIGFuZCBULTYwMCkuCgpbIVtFLiBQZXRlciBTdGVlbnN0cmEvVVNGV1MsIFB1YmxpYyBkb21haW4sIHZpYSBXaWtpbWVkaWEgQ29tbW9uc10oLi4vbWVkaWEvNTEycHgtU2FsbW9fc2FsYXJfc21vbHRzLmpwZyldKGh0dHBzOi8vdXBsb2FkLndpa2ltZWRpYS5vcmcvd2lraXBlZGlhL2NvbW1vbnMvdGh1bWIvZC9kMy9TYWxtb19zYWxhcl9zbW9sdHMuanBnLzI1NnB4LVNhbG1vX3NhbGFyX3Ntb2x0cy5qcGcpCgpFLiBQZXRlciBTdGVlbnN0cmEvVVNGV1MsIFB1YmxpYyBkb21haW4sIHZpYSBXaWtpbWVkaWEgQ29tbW9ucwoKR2lyaSwgUy4gUy4sIEdyYWhhbSwgSi4sIEhhbWlkLCBOLiBLLiBBLiwgRG9uYWxkLCBKLiBBLiAmIFR1cmNoaW5pLCBHLiBNLiAoMjAxNikuIERpZXRhcnkgbWljcm9udXRyaWVudHMgYW5kIGluIHZpdm8gbuKIkjMgTEMtUFVGQSBiaW9zeW50aGVzaXMgaW4gQXRsYW50aWMgc2FsbW9uLiAqQXF1YWN1bHR1cmUqLCA0NTIsIDQxNi0yNS4KCkxpbmsgdG8gW3BhcGVyXShkb2k6MTAuMTAxNi9qLmFxdWFjdWx0dXJlLjIwMTUuMDUuMDIyKTsgdGhlIGRhdGEgYXJlIGF2YWlsYWJsZSBbaGVyZV0oLi4vZGF0YS9naXJpLmNzdikKCiMjIyBQcmVsaW1pbmFyaWVzCgpGaXJzdCwgbG9hZCB0aGUgcmVxdWlyZWQgcGFja2FnZXMgKHNqc3RhdHMsIHB3cikKCmBgYHtyIGluY2x1ZGU9RkFMU0UsIHJlc3VsdHM9J2hpZGUnfQpzb3VyY2UoIi4uL1IvbGlicmFyaWVzLlIiKSAgICN0aGUgbGlicmFyaWVzIHNjcmlwdCBsb2FkcyBhIGNvbW1vbiBzZXQgb2YgcGFja2FnZXMKbGlicmFyeShwd3IpCmBgYAoKSW1wb3J0IGdpcmkgZGF0YSBmaWxlIChnaXJpLmNzdikKCmBgYHtyfQpnaXJpIDwtIHJlYWQuY3N2KCIuLi9kYXRhL2dpcmkuY3N2IikKaGVhZChnaXJpLDEwKQpgYGAKCk1ha2UgdHJlYXQgYSBmYWN0b3IKCmBgYHtyIH0KZ2lyaSR0cmVhdCA8LSBmYWN0b3IoZ2lyaSR0cmVhdCkKYGBgCgojIyMgRml0IG1vZGVsIGZvciBsb25nLWNoYWluIG9tZWdhLTMgZmF0dHkgYWNpZHMgYXMgdGhlIHJlc3BvbnNlIHZhcmlhYmxlCgpUaGlzIGlzIHRoZSB2YXJpYWJsZSBuLjMubGMuUFVGQQoKYGBge3IgfQpnaXJpLmFvdiA8LSBhb3Yobi4zLkxDLlBVRkF+dHJlYXQsIGRhdGE9Z2lyaSkKYGBgCgpDaGVjayBkaWFnbm9zdGljcy4gV2UgYXJlIG1vc3QgaW50ZXJlc3RlZCBpbiB0aGUgcmVzaWR1YWwgcGxvdC4KCmBgYHtyIH0KcGxvdChnaXJpLmFvdikKYGBgCgpOb3RoaW5nIG9mIGNvbmNlcm4gaW4gZGlhZ25vc3RpYyBwbG90cwoKIyMjIEV4YW1pbmUgbW9kZWwgcmVzdWx0cy4KCmBgYHtyIH0KdGlkeShnaXJpLmFvdikKYGBgCgpHZXQgZWZmZWN0IHNpemVzCgpgYGB7ciB9CiNlZmZlY3RzaXplcyB1c2VkIGhlcmUgdG8gZ2V0IGV0YS1zcXVhcmVkIHZhbHVlcywgd2hpY2ggdGlkeSBkb2Vzbid0IHByb3ZpZGUKZWZmZWN0c2l6ZShnaXJpLmFvdikKZWZmZWN0c2l6ZShnaXJpLmFvdiwgdHlwZSA9ICJvbWVnYSIpCmVmZmVjdHNpemUoZ2lyaS5hb3YsIHR5cGUgPSAiZiIpCmVtbWVhbnMoZ2lyaS5hb3YsIH50cmVhdCkKYGBgCgojIyMgRG8gbGluZWFyIHBvbHlub21pYWwgY29udHJhc3QKCmBgYHtyIH0KY29udHJhc3RzKGdpcmkkdHJlYXQpIDwtIGNvbnRyLnBvbHkoNCwgc2NvcmVzPWMoMCwgMTAwLCAzMDAsIDYwMCkpCmdpcmkxLmFvdiA8LSBhb3Yobi4zLkxDLlBVRkF+dHJlYXQsIGRhdGE9Z2lyaSkKc3VtbWFyeS5hb3YoZ2lyaTEuYW92LCBzcGxpdD1saXN0KHRyZWF0PWxpc3QoIkxpbmVhciI9MSwgIlF1YWRyYXRpYyI9MikpKQpgYGAK