This script just generates some basic summary statistics that are
used as input for power calculations using the Aranda et al. data
set
source("../R/libraries.R") #the libraries script loads a common set of packages
aranda <- read.csv("../data/aranda.csv")
#Plot to check that linear relationship is reasonable as a model
plot(richness~precip, data=aranda)
# fit model in case residuals are wanted
reg<-lm(richness~precip, data=aranda)
For power, we want estimates of σx and
σy. The best estimates are the standard deviations
of precipitation and species richness. In the worked example, we’ve
decided that a 50% change in overall richness is an important effect to
detect. We need to translate this into an actual change in the response
variable, and there are several ways we could do it. We will calculate
the overall mean richness, and then hypothesise that the lowest
precipitation has richness 25% below this value, and the highest
precipitation sites have an increase of 25%. To get the effect, we just
need the mean(richness)
summarise(aranda,mean=mean(richness), sd=sd(richness))
summarise(aranda,mean=mean(precip), sd=sd(precip))
The values we want are:
To calculate a slope of interest, we’ll assume that the range in
precipitation is represented by the range in the existing data
(113-1492). We could have also obtained this information from other
sources.
LS0tCnRpdGxlOiAiUUsgQm94IDYuMTEiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgdGhlbWU6IGZsYXRseQotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKVGhpcyBzY3JpcHQganVzdCBnZW5lcmF0ZXMgc29tZSBiYXNpYyBzdW1tYXJ5IHN0YXRpc3RpY3MgdGhhdCBhcmUgdXNlZCBhcyBpbnB1dCBmb3IgcG93ZXIgY2FsY3VsYXRpb25zIHVzaW5nIHRoZSBBcmFuZGEgZXQgYWwuIGRhdGEgc2V0CgpgYGB7ciByZXN1bHRzPSdoaWRlJ30Kc291cmNlKCIuLi9SL2xpYnJhcmllcy5SIikgICAjdGhlIGxpYnJhcmllcyBzY3JpcHQgbG9hZHMgYSBjb21tb24gc2V0IG9mIHBhY2thZ2VzCmBgYAoKYGBge3J9CmFyYW5kYSA8LSByZWFkLmNzdigiLi4vZGF0YS9hcmFuZGEuY3N2IikKI1Bsb3QgdG8gY2hlY2sgdGhhdCBsaW5lYXIgcmVsYXRpb25zaGlwIGlzIHJlYXNvbmFibGUgYXMgYSBtb2RlbApwbG90KHJpY2huZXNzfnByZWNpcCwgZGF0YT1hcmFuZGEpCiMgZml0IG1vZGVsIGluIGNhc2UgcmVzaWR1YWxzIGFyZSB3YW50ZWQKcmVnPC1sbShyaWNobmVzc35wcmVjaXAsIGRhdGE9YXJhbmRhKQpgYGAKCkZvciBwb3dlciwgd2Ugd2FudCBlc3RpbWF0ZXMgb2YgKs+DKn54fiBhbmQgKs+DKn55fi4gVGhlIGJlc3QgZXN0aW1hdGVzIGFyZSB0aGUgc3RhbmRhcmQgZGV2aWF0aW9ucyBvZiBwcmVjaXBpdGF0aW9uIGFuZCBzcGVjaWVzIHJpY2huZXNzLiBJbiB0aGUgd29ya2VkIGV4YW1wbGUsIHdlJ3ZlIGRlY2lkZWQgdGhhdCBhIDUwJSBjaGFuZ2UgaW4gb3ZlcmFsbCByaWNobmVzcyBpcyBhbiBpbXBvcnRhbnQgZWZmZWN0IHRvIGRldGVjdC4gV2UgbmVlZCB0byB0cmFuc2xhdGUgdGhpcyBpbnRvIGFuIGFjdHVhbCBjaGFuZ2UgaW4gdGhlIHJlc3BvbnNlIHZhcmlhYmxlLCBhbmQgdGhlcmUgYXJlIHNldmVyYWwgd2F5cyB3ZSBjb3VsZCBkbyBpdC4gV2Ugd2lsbCBjYWxjdWxhdGUgdGhlIG92ZXJhbGwgbWVhbiByaWNobmVzcywgYW5kIHRoZW4gaHlwb3RoZXNpc2UgdGhhdCB0aGUgbG93ZXN0IHByZWNpcGl0YXRpb24gaGFzIHJpY2huZXNzIDI1JSBiZWxvdyB0aGlzIHZhbHVlLCBhbmQgdGhlIGhpZ2hlc3QgcHJlY2lwaXRhdGlvbiBzaXRlcyBoYXZlIGFuIGluY3JlYXNlIG9mIDI1JS4gVG8gZ2V0IHRoZSBlZmZlY3QsIHdlIGp1c3QgbmVlZCB0aGUgbWVhbihyaWNobmVzcykKCmBgYHtyfQpzdW1tYXJpc2UoYXJhbmRhLG1lYW49bWVhbihyaWNobmVzcyksIHNkPXNkKHJpY2huZXNzKSkKc3VtbWFyaXNlKGFyYW5kYSxtZWFuPW1lYW4ocHJlY2lwKSwgc2Q9c2QocHJlY2lwKSkKYGBgCgpUaGUgdmFsdWVzIHdlIHdhbnQgYXJlOgoKLSAgIDEwOCBmb3IgdGhlIGNoYW5nZSBpbiBzcGVjaWVzIHJpY2huZXNzICgyMTYvMikKCi0gICAxMzIgZm9yIHN+eX4KCi0gICA0MzIgZm9yIHN+eH4KClRvIGNhbGN1bGF0ZSBhIHNsb3BlIG9mIGludGVyZXN0LCB3ZSdsbCBhc3N1bWUgdGhhdCB0aGUgcmFuZ2UgaW4gcHJlY2lwaXRhdGlvbiBpcyByZXByZXNlbnRlZCBieSB0aGUgcmFuZ2UgaW4gdGhlIGV4aXN0aW5nIGRhdGEgKDExMy0xNDkyKS4gV2UgY291bGQgaGF2ZSBhbHNvIG9idGFpbmVkIHRoaXMgaW5mb3JtYXRpb24gZnJvbSBvdGhlciBzb3VyY2VzLiAgIAoK